Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Site-selective proteolytic cleavage of plant viruses by photoactive chiral nanoparticles

Abstract

Viral diseases of plants are associated with large health and economic costs. Antiviral agents developed for mammalian organisms have had limited success for plants, necessitating alternative strategies to address this biological and sustainability problem. Here we show that chiral 3 nm Cu1.96S nanoparticles can site-selectively cleave capsid in tobacco mosaic virus under sunlight. With d-penicillamine as surface ligands, the nanoparticles display high affinity to the Gln 99 to Ala 105 segment in the capsid via a network of supramolecular bonds and 3,000–10,000 times lower affinity to capsids of other viruses. Illumination with green light leads to polarization-dependent, protease-like hydrolysis of the amide bond between Asn 101 and Pro 102. Nanoparticles inhibited viral infectivity by 98.7% in protoplasts and 92.6% in plants while avoiding hypersensitive response and large environmental impact. These findings show that nanoparticles combining proteolytic activity due to metal ions and site selectivity due to nanoscale chirality can be used as effective antiviral agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of Pen-modified chiral nanoparticles.
Fig. 2: Circularly polarized light-response interaction between chiral nanoparticles and virus.
Fig. 3: Cleavage site analysis.
Fig. 4: Mechanism of the selective photocleavage of CP by chiral NPs.
Fig. 5: Photocleavage of virus by d-NPs in protoplasts and plants.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. The simulation data of the optimized models of Fig. 4 and the raw data of Table 2 are provided at https://doi.org/10.6084/m9.figshare.20045621. Source data are provided with this paper.

References

  1. Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. He, S. & Creasey Krainer, K. M. Pandemics of people and plants: which is the greater threat to food security? Mol. Plant 13, 933–934 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Jiang, G. et al. A rice NBS-ARC gene conferring quantitative resistance to bacterial blight is regulated by a pathogen effector-inducible miRNA. Mol. Plant 13, 1752–1767 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Vriet, C., Russinova, E. & Reuzeau, C. Boosting crop yields with plant steroids. Plant Cell 24, 842–857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hofmann, T. et al. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food 1, 416–425 (2020).

    Article  CAS  Google Scholar 

  6. Manfrin, A., Hanggli, A., van den Wildenberg, J. & McNeill, K. Substituent effects on the direct photolysis of benzotrifluoride derivatives. Environ. Sci. Technol. 54, 11109–11117 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Yuan, X. et al. Frequent gain and loss of resistance against tobacco mosaic virus in Nicotiana species. Mol. Plant 8, 1813–1815 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Pumplin, N. & Voinnet, O. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat. Rev. Microbiol. 11, 745–760 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, H., Li, C. & Gao, C. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 21, 661–677 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Demirer, G. S. et al. Nanotechnology to advance CRISPR-Cas genetic engineering of plants. Nat. Nanotechnol. 16, 243–250 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Giraldo, J. P., Wu, H., Newkirk, G. M. & Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541–553 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Lv, X. et al. Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections. Biomaterials 35, 4195–4203 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chariou, P. L. et al. Soil mobility of synthetic and virus-based model nanopesticides. Nat. Nanotechnol. 14, 712–718 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jones, S. T. et al. Modified cyclodextrins as broad-spectrum antivirals. Sci. Adv. 6, eaax9318 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bowman, M. C. et al. Inhibition of HIV fusion with multivalent gold nanoparticles. J. Am. Chem. Soc. 130, 6896–6897 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kong, B. et al. Virucidal nano-perforator of viral membrane trapping viral RNAs in the endosome. Nat. Commun. 10, 185 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang, W. et al. Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B. Nat. Nanotechnol. 15, 406–416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mitter, N. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Torney, F., Trewyn, B. G., Lin, V. S. & Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 2, 295–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Chung, Y. H., Beiss, V., Fiering, S. N. & Steinmetz, N. F. COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano 14, 12522–12537 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Chariou, P. L. & Steinmetz, N. F. Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier. ACS Nano 11, 4719–4730 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Yang, T. & Duncan, T. V. Challenges and potential solutions for nanosensors intended for use with foods. Nat. Nanotechnol. 16, 251–265 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Kotov, N. A. Chemistry. Inorganic nanoparticles as protein mimics. Science 330, 188–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Lauster, D. et al. Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. Nat. Nanotechnol. 15, 373–379 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Kwon, P. S. et al. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat. Chem. 12, 26–35 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Vigant, F., Santos, N. C. & Lee, B. Broad-spectrum antivirals against viral fusion. Nat. Rev. Microbiol. 13, 426–437 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cagno, V. et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater. 17, 195–203 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Xu, L. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 601, 366–373 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Dong, J. et al. Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature 602, 606–611 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Yan, J. et al. Self-assembly of chiral nanoparticles into semiconductor helices with tunable near-infrared optical activity. Chem. Mater. 32, 476–488 (2019).

    Article  CAS  Google Scholar 

  31. Yang, M. et al. Self-assembly of nanoparticles into biomimetic capsid-like nanoshells. Nat. Chem. 9, 287–294 (2017).

    Article  PubMed  CAS  Google Scholar 

  32. Zhang, Q. et al. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science 365, 1475–1478 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Sun, M. et al. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem. 10, 821–830 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Hou, K. et al. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat. Commun. 11, 4790 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ge, P. & Zhou, Z. H. Hydrogen-bonding networks and RNA bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches. Proc. Natl Acad. Sci. USA 108, 9637–9642 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, H., Zhao, J., Liu, S., Zhang, D. P. & Liu, Y. Tm-22 confers different resistance responses against tobacco mosaic virus dependent on its expression level. Mol. Plant 6, 971–974 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Ge, P. & Zhou, Z. H. Hydrogen-bonding networks and RNA bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches. Proc. Natl Acad. Sci. USA 108, 9637–9642 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, J. Y. et al. Assembly of gold nanoparticles into chiral superstructures driven by circularly polarized light. J. Am. Chem. Soc. 141, 11739–11744 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qu, A. et al. Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. Nat. Biomed. Eng. 5, 103–113 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Yeom, J. et al. Chiromagnetic nanoparticles and gels. Science 359, 309–314 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Moloney, M. P., Gun’ko, Y. K. & Kelly, J. M. Chiral highly luminescent CdS quantum dots. Chem. Commun. (Camb.) 38, 3900–3902 (2007).

    Article  CAS  Google Scholar 

  42. Sperling, R. A., Rivera Gil, P., Zhang, F., Zanella, M. & Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 37, 1896–1908 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, J. et al. Luminescent gold nanoparticles with size-independent emission. Angew. Chem. Int. Ed. 55, 8894–8898 (2016).

    Article  CAS  Google Scholar 

  44. Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 1–26 (2012).

    Article  CAS  Google Scholar 

  45. Yin, J. J. et al. Phototoxicity of nano titanium dioxides in HaCaT keratinocytes—generation of reactive oxygen species and cell damage. Toxicol. Appl. Pharmacol. 263, 81–88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pospisil, P. Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Front Plant Sci. 7, 1950–1962 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jones, B. J., Vergne, M. J., Bunk, D. M., Locascio, L. E. & Hayes, M. A. Cleavage of peptides and proteins using light-generated radicals from titanium dioxide. Anal. Chem. 79, 1327–1332 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Ludwig, J. et al. Ultrafast hole trapping and relaxation dynamics in p-type CuS nanodisks. J. Phys. Chem. Lett. 6, 2671–2675 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Gilmanshin, R., Williams, S., Callender, R. H., Woodruff, W. H. & Dyer, R. B. Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc. Natl Acad. Sci. USA 94, 3709–3713 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dolan, E. A., Yelle, R. B., Beck, B. W., Fischer, J. T. & Ichiye, T. Protein control of electron transfer rates via polarization: molecular dynamics studies of rubredoxin. Biophys. J. 86, 2030–2036 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, L., Li, C., Zhang, Z. & Alexov, E. On the dielectric “constant” of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J. Chem. Theory Comput. 9, 2126–2136 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Amin, M. & Kupper, J. Variations in proteins dielectric constants. ChemistryOpen 9, 691–694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ly, H. G. T. et al. Superactivity of MOF-808 toward peptide bond hydrolysis. J. Am. Chem. Soc. 140, 6325–6335 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. El-Shetehy, M. et al. Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nat. Nanotechnol. 16, 344–353 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Hu, P. et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 14, 7970–7986 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Guo, W., Lu, X., Liu, B., Yan, H. & Feng, J. Anti-TMV activity and mode of action of three alkaloids isolated from Chelidonium majus. Pest Manag Sci. 77, 510–517 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Adeel, M. et al. Carbon-based nanomaterials suppress tobacco mosaic virus (TMV) infection and induce resistance in Nicotiana benthamiana. J. Hazard. Mater. 404, 124167 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Gilbertson, L. M. et al. Guiding the design space for nanotechnology to advance sustainable crop production. Nat. Nanotechnol. 15, 801–810 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Kah, M., Kookana, R. S., Gogos, A. & Bucheli, T. D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, L. et al. Arabinogalactan protein–rare earth element complexes activate plant endocytosis. Proc. Natl Acad. Sci. USA 116, 14349–14357 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wong, M. H. et al. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat. Mater. 16, 264–272 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Dousset, S. et al. Facilitated transport of diuron and glyphosate in high copper vineyard soils. Environ. Sci. Technol. 41, 8056–8061 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Ma, G. X. et al. Self-assembly of copper sulfide nanoparticles into nanoribbons with continuous crystallinity. ACS Nano 7, 9010–9018 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, J., Zhou, K., Zhang, Y., Du, M. & Wang, Q. Precise self-assembly of nanoparticles into ordered nanoarchitectures directed by tobacco mosaic virus coat protein. Adv. Mater. 31, e1901485 (2019).

    Article  PubMed  CAS  Google Scholar 

  65. King, M. A. Detection of dead cells and measurement of cell killing by flow cytometry. J. Immunol. Methods 243, 155–166 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Gan, H. et al. Dynamics of 5-hydroxymethylcytosine during mouse spermatogenesis. Nat. Commun. 4, 1995 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key R&D Program (2021YFA1200300), and is also supported by the National Natural Science Foundation of China (32071400, 21925402, 21977038). N.A.K is grateful to NSF 1463474 and NSF 1566460 for support. We are grateful to the Brazilian funding agencies CAPES (Finance Code 001), CNPq (process 311353/2019-3) and FAPESP (processes 2012/15147-4 and 2013/07296-2) for financial support and the HPC resources provided by the SDumont supercomputer at the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil, http://sdumont.lncc.br) and by the Cloud@UFSCar.

Author information

Authors and Affiliations

Authors

Contributions

H.K., N.A.K. and C.X. conceived the project and designed the experiments. J.Y. was responsible for the antiviral experiments on tobacco and plant cells. R.G. was responsible for the synthesis and characterization of the chiral NPs and studied their photoinduced cleavage properties. R.G., L.X. and M.S. carried out the CD, western blot, XPS, X-ray diffraction, LC–MS–MS and ROS experiments. M.X. performed the test on antiviral activity in TMV plants. C.H. and X.G. helped to synthesis, characterize and analyse the mechanism. F.M.C., X.Z., P.K. and A.F.M. performed the MD, QM and DFT simulations, and analysed the results. H.K. and N.A.K. conceptualized the work. C.X. supervised the study. H.K., N.A.K. and C.X. analysed and discussed the results and wrote the manuscript

Corresponding authors

Correspondence to Chuanlai Xu, Jinguang Yang, Nicholas A. Kotov or Hua Kuang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Fabienne Schwab, Lixia Zhao, Vladimir Lobaskin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–42, Tables 1–6, notes 1–14 and references.

Reporting Summary

Supplementary Video 1

Isosurfaces for average electrostatic polarizations of D-NPs and L-NPs interacting with multiple QANPTTA segments of CP monomer in TMV capsid being illuminated with the light in the spectral window from 300 to 1000 nm.

Supplementary Video 2

Polarization maps according to the change in the electronic population for Ala100-Asn101-Pro102-Thr103 fragment (ANPT) interacting with D-NP, upon excitation at 533-534 nm.

Supplementary Video 3

Polarization maps according to the change in the electronic population for Ala100-Asn101-Pro102-Thr103 fragment (ANPT) interacting with L-NP, upon excitation at 533-534 nm.

Source data

Source Data Fig. 5

Statistical Source Data

Source Data Table 1

Statistical Source Data

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Xu, L., Sun, M. et al. Site-selective proteolytic cleavage of plant viruses by photoactive chiral nanoparticles. Nat Catal 5, 694–707 (2022). https://doi.org/10.1038/s41929-022-00823-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00823-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing