Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LimF is a versatile prenyltransferase for histidine-C-geranylation on diverse non-natural substrates

Abstract

Prenylation plays an important role in diversifying the structure and function of secondary metabolites. Although several cyanobactin prenyltransferases have been characterized, their chemistries are mainly limited to the modification of electron-rich heteroatoms. Here we report a prenyltransferase, LimF, from Limnothrix sp. CACIAM 69d, geranylating the electron-deficient C2 atom of His imidazole. Interestingly, in addition to its native substrate, LimF also modifies diverse exotic peptides, including thioether-closed macrocycles. We have also serendipitously uncovered Tyr-O-geranylating activity as the secondary function of LimF, providing evolutional insight into the divergent repertoire of prenylated peptides produced by cyanobactin PTases. Crystallographic analysis of LimF complexed with a pentapeptide substrate and a prenyl donor analogue provides the structural basis for its His recognition and its bifunctionality. We also show the prenylation ability of LimF on various bioactive molecules containing an imidazole group, including non-amino acid small molecules, highlighting its potential as a versatile biocatalyst for chemically challenging imidazole C-geranylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A putative cyanobactin BGC from Limnothrix sp. CACIAM 69d including LimF.
Fig. 2: In vitro LimF reaction confirms the His-C2-forward geranylation in limnothamide.
Fig. 3: Substrate probing by FIT-LimF system validates the broad substrate tolerance of LimF.
Fig. 4: Tyr-O-geranylation occurs as the secondary prenylation mode of LimF.
Fig. 5: Crystallographic characterization of the LimF–GSPP–peptide complex.
Fig. 6: Selective C-geranylation of imidazole-containing bioactive molecules.

Similar content being viewed by others

Data availability

SSN analysis results, relevant chromatograms for all the LC–MS and LC–MS/MS experiments, spectra for all the NMR experiments, plots for kinetic analyses of LimF-catalysed geranylation reactions, multiple sequence alignment of LimF and its homologous PTases, accessions for the genes encoded in the lim BGC, data collection and refinement statics for the crystal analysis, primer sequences and DNA template assembly schemes are available in the Supplementary Information. The accession numbers used for bioinformatic analysis are listed in the Supplementary Information. The PDB accession numbers for reference protein structures are shown in Supplementary Fig. 31. The coordinates and structure factors of LimF–GSPP–peptide complex and the LimF–GSPP complex have been deposited in the Protein Data Bank (PDB 7VMW and 7VMY, respectively). Other results are available from the corresponding authors upon reasonable request.

References

  1. Vickery, C. R., La Clair, J. J., Burkart, M. D. & Noel, J. P. Harvesting the biosynthetic machineries that cultivate a variety of indispensable plant natural products. Curr. Opin. Chem. Biol. 31, 66–73 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao, H. et al. Dimericbiscognienyne A: a meroterpenoid dimer from Biscogniauxia sp. with new skeleton and its activity. Org. Lett. 19, 38–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. He, H. et al. Discovery of the cryptic function of terpene cyclases as aromatic prenyltransferases. Nat. Commun. 11, 1–13 (2020).

    Article  CAS  Google Scholar 

  4. Li, S.-M. Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat. Prod. Rep. 27, 57–78 (2010).

    Article  PubMed  Google Scholar 

  5. Awakawa, T. & Abe, I. Molecular basis for the plasticity of aromatic prenyltransferases in hapalindole biosynthesis. Beilstein J. Org. Chem. 15, 1545–1551 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chooi, Y.-H. et al. Genome mining of a prenylated and immunosuppressive polyketide from pathogenic fungi. Org. Lett. 15, 780–783 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matsuda, Y. & Abe, I. Biosynthesis of fungal meroterpenoids. Nat. Prod. Rep. 33, 26–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Shi, S., Li, J., Zhao, X., Liu, Q. & Song, S.-J. A comprehensive review: biological activity, modification and synthetic methodologies of prenylated flavonoids. Phytochemistry 191, 112895 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Kuzuyama, T., Noel, J. P. & Richard, S. B. Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 435, 983–987 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sattely, E. S., Fischbach, M. A. & Walsh, C. T. Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways. Nat. Prod. Rep. 25, 757–793 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Edwards, D. J. & Gerwick, W. H. Lyngbyatoxin biosynthesis: sequence of biosynthetic gene cluster and identification of a novel aromatic prenyltransferase. J. Am. Chem. Soc. 126, 11432–11433 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Montalbán-López, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).

    Article  PubMed  Google Scholar 

  14. Okada, M. et al. Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX. Nat. Chem. Biol. 1, 23–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Jeong, A., Suazo, K. F., Wood, W. G., Distefano, M. D. & Li, L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer’s disease. Crit. Rev. Biochem. Mol. Biol. 53, 279–310 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hatano, T. et al. Phenolic constituents of licorice. VIII. structures of glicophenone and glicoisoflavanone, and effects of licorice phenolics on methicillin-resistant Staphylococcus aureus. Chem. Pharm. Bull. (Tokyo) 48, 1286–1292 (2000).

    Article  CAS  Google Scholar 

  17. Fosgerau, K. & Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today 20, 122–128 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Vinogradov, A. A., Yin, Y. & Suga, H. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J. Am. Chem. Soc. 141, 4167–4181 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, L. & Bulaj, G. Converting peptides into drug leads by lipidation. Curr. Med. Chem. 19, 1602–1618 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Offerman, S. C. et al. N-Tert-prenylation of the indole ring improves the cytotoxicity of a short antagonist G analogue against small cell lung cancer. MedChemComm 8, 551–558 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goto, Y. & Suga, H. The RaPID platform for the discovery of pseudo-natural macrocyclic peptides. Acc. Chem. Res. 54, 3604–3617 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Czekster, C. M., Ge, Y. & Naismith, J. Mechanisms of cyanobactin biosynthesis. Curr. Opin. Chem. Biol. 35, 80–88 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu, W., Dong, S.-H., Sarkar, S., Nair, S. K. & Schmidt, E. W. The biochemistry and structural biology of cyanobactin pathways: enabling combinatorial biosynthesis. Methods Enzymol. 604, 113–163 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leikoski, N. et al. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides. Chem. Biol. 20, 1033–1043 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Tello, M., Kuzuyama, T., Heide, L., Noel, J. P. & Richard, S. B. The ABBA family of aromatic prenyltransferases: broadening natural product diversity. Cell. Mol. Life Sci. 65, 1459–1463 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saleh, O., Haagen, Y., Seeger, K. & Heide, L. Prenyl transfer to aromatic substrates in the biosynthesis of aminocoumarins, meroterpenoids and phenazines: the ABBA prenyltransferase family. Phytochemistry 70, 1728–1738 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Hao, Y. et al. Molecular basis for the broad substrate selectivity of a peptide prenyltransferase. Proc. Natl Acad. Sci. USA 113, 14037–14042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McIntosh, J. A., Donia, M. S., Nair, S. K. & Schmidt, E. W. Enzymatic basis of ribosomal peptide prenylation in cyanobacteria. J. Am. Chem. Soc. 133, 13698–13705 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morita, M. et al. Post-translational tyrosine geranylation in cyanobactin biosynthesis. J. Am. Chem. Soc. 140, 6044–6048 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martins, J. et al. Sphaerocyclamide, a prenylated cyanobactin from the cyanobacterium Sphaerospermopsis sp. LEGE 00249. Sci. Rep. 8, 1–9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Parajuli, A. et al. A unique tryptophan C‐prenyltransferase from the Kawaguchipeptin biosynthetic pathway. Angew. Chem. Int. Ed. 55, 3596–3599 (2016).

    Article  CAS  Google Scholar 

  32. Okada, M. et al. Stereospecific prenylation of tryptophan by a cyanobacterial post-translational modification enzyme. Org. Biomol. Chem. 14, 9639–9644 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Dalponte, L. et al. N-Prenylation of tryptophan by an aromatic prenyltransferase from the cyanobactin biosynthetic pathway. Biochemistry 57, 6860–6867 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Phan, C.-S. et al. Argicyclamides A–C unveil enzymatic basis for guanidine bis-prenylation. J. Am. Chem. Soc. 143, 10083–10087 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Donia, M. S., Ravel, J. & Schmidt, E. W. A global assembly line for cyanobactins. Nat. Chem. Biol. 4, 341–343 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tianero, M. D. B., Donia, M. S., Young, T. S., Schultz, P. G. & Schmidt, E. W. Ribosomal route to small-molecule diversity. J. Am. Chem. Soc. 134, 418–425 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Ruffner, D. E., Schmidt, E. W. & Heemstra, J. R. Assessing the combinatorial potential of the RiPP cyanobactin tru pathway. ACS Synth. Biol. 4, 482–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Tianero, M. D. et al. Metabolic model for diversity-generating biosynthesis. Proc. Natl Acad. Sci. USA 113, 1772–1777 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Purushothaman, M. et al. Genome mining based discovery of the cyclic peptide tolypamide and TolF, a Ser/Thr forward O‐prenyltransferase. Angew. Chem. Int. Ed. 60, 8460–8465 (2021).

    Article  CAS  Google Scholar 

  40. Sardar, D. et al. Enzymatic N- and C-protection in cyanobactin RiPP natural products. J. Am. Chem. Soc. 139, 2884–2887 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mattila, A. et al. Biosynthesis of the bis-prenylated alkaloids muscoride A and B. ACS Chem. Biol. 14, 2683–2690 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Atkinson, H. J., Morris, J. H., Ferrin, T. E. & Babbitt, P. C. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS ONE 4, e4345 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lima, A. R. J. et al. Insights into Limnothrix sp. metabolism based on comparative genomics. Front Microbiol. 9, 2811 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Donia, M. S. & Schmidt, E. W. Linking chemistry and genetics in the growing cyanobactin natural products family. Chem. Biol. 18, 508–519 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koehnke, J. et al. The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain. Nat. Struct. Mol. Biol. 19, 767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sarkar, S., Gu, W. & Schmidt, E. W. Expanding the chemical space of synthetic cyclic peptides using a promiscuous macrocyclase from prenylagaramide biosynthesis. ACS Catal. 10, 7146–7153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gu, W., Sardar, D., Pierce, E. & Schmidt, E. W. Roads to Rome: role of multiple cassettes in cyanobactin RiPP biosynthesis. J. Am. Chem. Soc. 140, 16213–16221 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ge, Y. et al. Insights into the mechanism of the cyanobactin heterocyclase enzyme. Biochemistry 58, 2125–2132 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Goto, Y. et al. Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem. Biol. 3, 120–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Goto, Y., Katoh, T. & Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc. 6, 779 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Burkhart, B. J., Schwalen, C. J., Mann, G., Naismith, J. H. & Mitchell, D. A. YcaO-dependent posttranslational amide activation: biosynthesis, structure, and function. Chem. Rev. 117, 5389–5456 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sinha Roy, R., Belshaw, P. J. & Walsh, C. T. Mutational analysis of posttranslational heterocycle biosynthesis in the gyrase inhibitor microcin B17: distance dependence from propeptide and tolerance for substitution in a GSCG cyclizable sequence. Biochemistry 37, 4125–4136 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Vinogradov, A. A. et al. Promiscuous enzymes cooperate at the substrate level en route to lactazole A. J. Am. Chem. Soc. 142, 13886–13897 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Wiebach, V. et al. An amphipathic alpha-helix guides maturation of the ribosomally-synthesized lipolanthines. Angew. Chem. Int. Ed. 59, 16777–16785 (2020).

    Article  CAS  Google Scholar 

  56. Song, I. et al. Molecular mechanism underlying substrate recognition of the peptide macrocyclase PsnB. Nat. Chem. Biol. 17, 1123–1131 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Narayanan, S., Vangapandu, S. & Jain, R. Regiospecific synthesis of 2,3-disubstituted-l-histidines and histamines. Bioorg. Med. Chem. Lett. 11, 1133–1136 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Koniev, O. & Wagner, A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 44, 5495–5551 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. deGruyter, J. N., Malins, L. R. & Baran, P. S. Residue-specific peptide modification: a chemist’s guide. Biochemistry 56, 3863–3873 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Liao, S.-M., Du, Q.-S., Meng, J.-Z., Pang, Z.-W. & Huang, R.-B. The multiple roles of histidine in protein interactions. Chem. Cent. J. 7, 1–12 (2013).

    Article  CAS  Google Scholar 

  61. Zhang, Y. et al. Diphthamide biosynthesis requires an organic radical generated by an iron–sulphur enzyme. Nature 465, 891–896 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Larsen, T. O., Frisvad, J. C. & Jensen, S. R. Aurantiamine, a diketopiperazine from two varieties of Penicillium aurantiogriseum. Phytochemistry 31, 1613–1615 (1992).

    Article  Google Scholar 

  63. Kanoh, K. et al. (−)-Phenylahistin: a new mammalian cell cycle inhibitor produced by Aspergillus ustus. Bioorg. Med. Chem. Lett. 7, 2847–2852 (1997).

    Article  CAS  Google Scholar 

  64. Jan, C., Dippenaar, A. & Holzapfel, C. W. Crystal structure of the metal complexes of viridamine. S. Afr. J. Chem. 30, 161–168 (1977).

    Google Scholar 

  65. Niimura, N., Chatake, T., Kurihara, K. & Maeda, M. Hydrogen and hydration in proteins. Cell Biochem. Biophys. 40, 351–369 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Matsuo, H., Ohe, M., Sakiyama, F. & Narita, K. A new approach to the determination of pKa’s of histidine residues in proteins. J. Biochem. 72, 1057–1060 (1972).

    Article  CAS  PubMed  Google Scholar 

  67. Estrada, P., Morita, M., Hao, Y., Schmidt, E. W. & Nair, S. K. A single amino acid switch alters the isoprene donor specificity in ribosomally synthesized and post-translationally modified peptide prenyltransferases. J. Am. Chem. Soc. 140, 8124–8127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Craik, D. J., Fairlie, D. P., Liras, S. & Price, D. The future of peptide‐based drugs. Chem. Biol. Drug Des. 81, 136–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Henninot, A., Collins, J. C. & Nuss, J. M. The current state of peptide drug discovery: back to the future? J. Med. Chem. 61, 1382–1414 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Yamagishi, Y. et al. Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library. Chem. Biol. 18, 1562–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, M., Zhang, Z., Cheetham, J., Ren, D. & Zhou, Z. S. Discovery and characterization of a photo-oxidative histidine-histidine cross-link in IgG1 antibody utilizing 18O-labeling and mass spectrometry. Anal. Chem. 86, 4940–4948 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xu, C.-F. et al. Discovery and characterization of histidine oxidation initiated cross-links in an IgG1 monoclonal antibody. Anal. Chem. 89, 7915–7923 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Noisier, A. F. et al. Late‐stage functionalization of histidine in unprotected peptides. Angew. Chem. Int. Ed. 58, 19096–19102 (2019).

    Article  CAS  Google Scholar 

  74. Chen, X. et al. Histidine-specific peptide modification via visible-light-promoted C–H alkylation. J. Am. Chem. Soc. 141, 18230–18237 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Nakane, K. et al. Proximity histidine labeling by umpolung strategy using singlet oxygen. J. Am. Chem. Soc. 143, 7726–7731 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Zallot, R., Oberg, N. & Gerlt, J. A. The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Gerlt, J. A. et al. Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 1854, 1019–1037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liebschner, D., Yamada, Y., Matsugaki, N., Senda, M. & Senda, T. On the influence of crystal size and wavelength on native SAD phasing. Acta Crystallogr. D. 72, 728–741 (2016).

    Article  CAS  Google Scholar 

  80. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hirata, K. et al. Achievement of protein micro-crystallography at SPring-8 beamline BL32XU. J. Phys. Conf. Ser. 425, 012002 (2013).

    Article  CAS  Google Scholar 

  82. Hirata, K. et al. ZOO: an automatic data-collection system for high-throughput structure analysis in protein microcrystallography. Acta Crystallogr. D. 75, 138–150 (2019).

    Article  CAS  Google Scholar 

  83. Yamashita, K., Hirata, K. & Yamamoto, M. KAMO: towards automated data processing for microcrystals. Acta Crystallogr. D 74, 441–449 (2018).

    Article  CAS  Google Scholar 

  84. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  86. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article  CAS  Google Scholar 

  87. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

  88. Liebschner, D. et al. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr. D 73, 148–157 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Nagai (Tokyo University of Marine Science and Technology) and T. Nagashima (RIKEN Center for Biosystems Dynamic Research) for technical assistance with the NMR analysis. We thank all beamline staff at BL32XU (SPring-8) and BL1A (Photon Factory) for their technical support. We also thank A. Vinogradov for stimulating scientific discussions. This work was supported by KAKENHI (JP16H06444 to H.S. and Y.G.; JP17H04762, JP19H01014, JP19K22243, JP20H02866 to Y.G.; JP20H05618 to H.S.; JP21K06051 to K.H.; JP19H02842 and JP21K19056 to M.O.) from the Japan Society for the Promotion of Science, and by Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from the Japan Agency for Medical Research and Development (AMED) under grant number JP19am0101070 (support number 1698).

Author information

Authors and Affiliations

Authors

Contributions

Y.G. and H.S. conceived and supervised the study. Y.Z., K.H., D.T.N., S.I., M.S., M.O., T.S., Y.G. and H.S. designed the experiments. Y.Z., K.H., D.T.N., S.I., S.K. and C.O. prepared recombinant LimF and its mutants. Y.Z., S.I., M.O. and Y.G. performed the bioinformatic analyses. Y.Z., D.T.N., S.I. and Y.G. performed the in vitro LimF reactions and substrate tolerance study. Y.Z., S.I. and M.S. performed the NMR experiments. K.H., S.K., C.O., T.S. and Y.G. performed the crystallographic study. All authors analysed the experimental results. Y.Z., K.H., K.O., M.O., T.S., Y.G. and H.S. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Toru Sengoku, Yuki Goto or Hiroaki Suga.

Ethics declarations

Competing interests

The following authors (H.S., Y.G., Y.Z. and M.O.) are co-inventors on patent application (JP 2021-170768) related to preparation of site-directed geranylated chemical entities with LimF. The other authors declare no competing interests.

Peer review

Peer review information

Nature Catalyis thanks Satish Nair and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Schemes 1 and 2, Figs. 1–32, Tables 1–14 and Methods.

Reporting Summary

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hamada, K., Nguyen, D.T. et al. LimF is a versatile prenyltransferase for histidine-C-geranylation on diverse non-natural substrates. Nat Catal 5, 682–693 (2022). https://doi.org/10.1038/s41929-022-00822-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00822-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing