Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oxygenate-based routes regulate syngas conversion over oxide–zeolite bifunctional catalysts

Abstract

The emerging oxide–zeolite bifunctional catalysis for direct syngas conversion has drawn extensive interest, both academically and industrially, with further exploration urging a clear mechanistic understanding of this complex catalytic network. Herein, using a specially designed quasi-in situ, solid-state nuclear magnetic resonance-gas chromatography/gas chromatography-mass spectrometry analysis strategy, this reaction is fully monitored from the very early induction period to steady-state conversion under high-pressure flow-reaction conditions, using ZnAlOx/H-ZSM-5 composites as model catalysts. We identify abundant critical and/or transient intermediates in dynamic evolution, including carboxylates, alkoxyls, acid-bounded methyl-cyclopentenones and methyl-cyclopentenyl carbocations, providing direct evidence of vigorous regulation by unique, oxygenate-based pathways of the reaction network. This proposed mechanism overturns the general cognition of oxide–zeolite reactions as simple tandem catalysis, and highlights the many roles (both positive and negative) of CO and H2 molecules via oxygenate-based routes, thus dictating the final product. The current characterization technology and its mechanistic understanding would benefit further exploration in bifunctional catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Catalytic performance of ZnAlOx/H-ZSM-5 in syngas conversion.
Fig. 2: Adsorbed-effluent species analyses by quasi-in situ ssNMR-GC.
Fig. 3: 13C–13C/13C–1H correlation NMR for species identification.
Fig. 4: 13C–13C J-INADEQUATE correlation NMR for bonding information.
Fig. 5: 13C isotope tracking during steady-state conversion.
Fig. 6: Mechanism of syngas conversion for ZnAlOx/H-ZSM-5.
Fig. 7: Adsorbed species analyses for different OXZEO catalysts.

Data availability

Data supporting the findings of this study are available within this paper and its Supplementary Information or from the corresponding author upon reasonable request. The datasets for catalytic performance tests of syngas conversion are available in the figshare repository (https://doi.org/10.6084/m9.figshare.19722955.v1).

References

  1. Dry, M. E. The Fischer-Tropsch process: 1950–2000. Catal. Today 71, 227–241 (2002).

    CAS  Article  Google Scholar 

  2. Sartipi, S., Makkee, M., Kapteijn, F. & Gascon, J. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: a review. Catal. Sci. Technol. 4, 893–907 (2014).

    CAS  Article  Google Scholar 

  3. Torres Galvis, H. M. & de Jong, K. P. Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal. 3, 2130–2149 (2013).

    CAS  Article  Google Scholar 

  4. Zhao, B. et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts. Chem 3, 323–333 (2017).

    CAS  Article  Google Scholar 

  5. Li, J. et al. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nat. Catal. 1, 787–793 (2018).

    CAS  Article  Google Scholar 

  6. Zhou, W. et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem. Soc. Rev. 48, 3193–3228 (2019).

    CAS  PubMed  Article  Google Scholar 

  7. Zhang, Q., Yu, J. & Corma, A. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities. Adv. Mater. 32, 2002927 (2020).

    Article  Google Scholar 

  8. Pan, X., Jiao, F., Miao, D. & Bao, X. Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis. Chem. Rev. 121, 6588–6609 (2021).

    CAS  PubMed  Article  Google Scholar 

  9. Jiao, F. et al. Selective conversion of syngas to light olefins. Science 351, 1065–1068 (2016).

    CAS  PubMed  Article  Google Scholar 

  10. Cheng, K. et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling. Angew. Chem. Int. Ed. Engl. 55, 4725–4728 (2016).

    CAS  PubMed  Article  Google Scholar 

  11. Jiao, F. et al. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate. Angew. Chem. Int. Ed. Engl. 57, 4692–4696 (2018).

    CAS  PubMed  Article  Google Scholar 

  12. Zhou, W. et al. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether. Angew. Chem. Int. Ed. Engl. 57, 12012–12016 (2018).

    CAS  PubMed  Article  Google Scholar 

  13. Li, N. et al. High-quality gasoline directly from syngas by dual metal oxide–zeolite (OX-ZEO) catalysis. Angew. Chem. Int. Ed. Engl. 58, 7400–7404 (2019).

    CAS  PubMed  Article  Google Scholar 

  14. Chang, C. D., Lang, W. H. & Silvestri, A. J. Synthesis gas conversion to aromatic hydrocarbons. J. Catal. 56, 268–273 (1979).

    CAS  Article  Google Scholar 

  15. Cheng, K. et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem 3, 334–347 (2017).

    CAS  Article  Google Scholar 

  16. Yang, J., Pan, X., Jiao, F., Li, J. & Bao, X. Direct conversion of syngas to aromatics. Chem. Commun. 53, 11146–11149 (2017).

    CAS  Article  Google Scholar 

  17. Ni, Y. et al. Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst. ACS Catal. 9, 1026–1032 (2018).

    Article  CAS  Google Scholar 

  18. Wang, C.-M., Wang, Y.-D. & Xie, Z.-K. Methylation of olefins with ketene in zeotypes and its implications for the direct conversion of syngas to light olefins: a periodic DFT study. Catal. Sci. Technol. 6, 6644–6649 (2016).

    CAS  Article  Google Scholar 

  19. Chowdhury, A. D. & Gascon, J. The curious case of ketene in zeolite chemistry and catalysis. Angew. Chem. Int. Ed. Engl. 57, 14982–14985 (2018).

    CAS  PubMed  Article  Google Scholar 

  20. Haw, J. F., Song, W., Marcus, D. M. & Nicholas, J. B. The mechanism of methanol to hydrocarbon catalysis. Acc. Chem. Res. 36, 317–326 (2003).

    CAS  PubMed  Article  Google Scholar 

  21. Svelle, S. et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. J. Am. Chem. Soc. 128, 14770–14771 (2006).

    CAS  PubMed  Article  Google Scholar 

  22. Olsbye, U. et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew. Chem. Int. Ed. Engl. 51, 5810–5831 (2012).

    CAS  PubMed  Article  Google Scholar 

  23. Ilias, S. & Bhan, A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal. 3, 18–31 (2013).

    CAS  Article  Google Scholar 

  24. Tian, P., Wei, Y., Ye, M. & Liu, Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 5, 1922–1938 (2015).

    CAS  Article  Google Scholar 

  25. Yarulina, I., Chowdhury, A. D., Meirer, F., Weckhuysen, B. M. & Gascon, J. Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nat. Catal. 1, 398–411 (2018).

    CAS  Article  Google Scholar 

  26. Cheng, Y.-T. & Huber, G. W. Chemistry of furan conversion into aromatics and olefins over HZSM-5: a model biomass conversion reaction. ACS Catal. 1, 611–628 (2011).

    CAS  Article  Google Scholar 

  27. Rezaei, P. S., Shafaghat, H. & Daud, W. M. A. W. Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: a review. Appl. Catal. A 469, 490–511 (2014).

    CAS  Article  Google Scholar 

  28. Liu, Y. et al. Formation mechanism of the first carbon-carbon bond and the first olefin in the methanol conversion into hydrocarbons. Angew. Chem. Int. Ed. Engl. 55, 5723–5726 (2016).

    CAS  PubMed  Article  Google Scholar 

  29. Chowdhury, A. D. et al. Initial carbon-carbon bond formation during the early stages of the methanol-to-olefin process proven by zeolite-trapped acetate and methyl acetate. Angew. Chem. Int. Ed. Engl. 55, 15840–15845 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Chowdhury, A. D. et al. Bridging the gap between the direct and hydrocarbon pool mechanisms of the methanol-to-hydrocarbons process. Angew. Chem. Int. Ed. Engl. 57, 8095–8099 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Plessow, P. N., Smith, A., Tischer, S. & Studt, F. Identification of the reaction sequence of the MTO initiation mechanism using ab initio-based kinetics. J. Am. Chem. Soc. 141, 5908–5915 (2019).

    CAS  PubMed  Article  Google Scholar 

  32. Yang, L. et al. Role of acetaldehyde in the roadmap from initial carbon-carbon bonds to hydrocarbons during methanol conversion. ACS Catal. 9, 6491–6501 (2019).

    CAS  Article  Google Scholar 

  33. Arora, S. S., Nieskens, D. L. S., Malek, A. & Bhan, A. Lifetime improvement in methanol-to-olefins catalysis over chabazite materials by high-pressure H2 co-feeds. Nat. Catal. 1, 666–672 (2018).

    CAS  Article  Google Scholar 

  34. Zhao, X. et al. Achieving a superlong lifetime in the zeolite-catalyzed MTO reaction under high pressure: synergistic effect of hydrogen and water. ACS Catal. 9, 3017–3025 (2019).

    CAS  Article  Google Scholar 

  35. Chen, Z. et al. Coupling of methanol and carbon monoxide over H-ZSM-5 to form aromatics. Angew. Chem. Int. Ed. Engl. 57, 12549–12553 (2018).

    CAS  PubMed  Article  Google Scholar 

  36. Gilani, S. Z. A. et al. Two-way desorption coupling to enhance the conversion of syngas into aromatics by MnO/H-ZSM-5. Catal. Sci. Technol. 10, 3366–3375 (2020).

    CAS  Article  Google Scholar 

  37. Arslan, M. T. et al. Selective conversion of syngas into tetramethylbenzene via an aldol-aromatic mechanism. ACS Catal. 10, 2477–2488 (2020).

    CAS  Article  Google Scholar 

  38. Lazo, N. D., Murray, D. K., Kieke, M. L. & Haw, J. F. In situ carbon-13 solid-state NMR study of the Cu/ZnO/Al2O3 methanol synthesis catalyst. J. Am. Chem. Soc. 114, 8552–8559 (1992).

    CAS  Article  Google Scholar 

  39. Chen, Y. et al. C−C bond formation in syngas conversion over zinc sites grafted on ZSM-5 Zeolite. Angew. Chem. Int. Ed. Engl. 59, 6529–6534 (2020).

    CAS  PubMed  Article  Google Scholar 

  40. Wang, W., Buchholz, A., Seiler, M. & Hunger, M. Evidence for an Initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts. J. Am. Chem. Soc. 125, 15260–15267 (2003).

    CAS  PubMed  Article  Google Scholar 

  41. Wang, W. & Hunger, M. Reactivity of surface alkoxy species on acidic zeolite catalysts. Acc. Chem. Res. 41, 895–904 (2008).

    CAS  PubMed  Article  Google Scholar 

  42. Wang, C. et al. Extra-framework aluminum-assisted initial C−C bond formation in methanol-to-olefins conversion on zeolite H-ZSM-5. Angew. Chem. Int. Ed. Engl. 57, 10197–10201 (2018).

    CAS  PubMed  Article  Google Scholar 

  43. Stepanov, A. G., Luzgin, M. V., Romannikov, V. N. & Zamaraev, K. I. NMR observation of the Koch reaction in zeolite H-ZSM-5 under mild conditions. J. Am. Chem. Soc. 117, 3615–3616 (1995).

    CAS  Article  Google Scholar 

  44. Luzgin, M. V., Stepanov, A. G., Sassi, A. & Sommer, J. Formation of carboxylic acids from small alkanes in zeolite H-ZSM-5. Chem. Eur. J. 6, 2368–2376 (2000).

    CAS  PubMed  Article  Google Scholar 

  45. Qi, L., Wei, Y., Xu, L. & Liu, Z. Reaction behaviors and kinetics during induction period of methanol conversion on HZSM-5 zeolite. ACS Catal. 5, 3973–3982 (2015).

    CAS  Article  Google Scholar 

  46. Liu, Z., Dong, X., Liu, X. & Han, Y. Oxygen-containing coke species in zeolite-catalyzed conversion of methanol to hydrocarbons. Catal. Sci. Technol. 6, 8157–8165 (2016).

    CAS  Article  Google Scholar 

  47. Gabrienko, A. A., Arzumanov, S. S., Toktarev, A. V. & Stepanov, A. G. Solid-state NMR characterization of the structure of intermediates formed from olefins on metal oxides (Al2O3 and Ga2O3). J. Phys. Chem. C Nanomater. Interfaces 116, 21430–21438 (2012).

    CAS  Article  Google Scholar 

  48. Xu, T., Munson, E. J. & Haw, J. F. Toward a systematic chemistry of organic reactions in zeolites: in situ NMR studies of ketones. J. Am. Chem. Soc. 116, 1962–1972 (1994).

    CAS  Article  Google Scholar 

  49. Ramirez, A. et al. Effect of zeolite topology and reactor configuration on the direct conversion of CO2 to light olefins and aromatics. ACS Catal. 9, 6320–6334 (2019).

    CAS  Article  Google Scholar 

  50. Chang, C. D. & Silvestri, A. J. The conversion of methanol and other o-compounds to hydrocarbons over zeolite catalysts. J. Catal. 47, 249–259 (1977).

    CAS  Article  Google Scholar 

  51. Khare, R., Arora, S. S. & Bhan, A. Implications of cofeeding acetaldehyde on ethene selectivity in methanol-to-hydrocarbons conversion on MFI and Its mechanistic interpretation. ACS Catal. 6, 2314–2331 (2016).

    CAS  Article  Google Scholar 

  52. Yan, T. et al. On the deactivation mechanism of zeolite catalyst in ethanol to butadiene conversion. J. Catal. 367, 7–15 (2018).

    CAS  Article  Google Scholar 

  53. Ni, Y., Zhu, W. & Liu, Z. H-ZSM-5-catalyzed hydroacylation involved in the coupling of methanol and formaldehyde to aromatics. ACS Catal. 9, 11398–11403 (2019).

    CAS  Article  Google Scholar 

  54. Wang, C. et al. New insight into the hydrocarbon-pool chemistry of the methanol-to-olefins conversion over zeolite H-ZSM-5 from GC-MS, solid-state NMR spectroscopy, and DFT calculations. Chem. Eur. J. 20, 12432–12443 (2014).

    CAS  PubMed  Article  Google Scholar 

  55. Olsbye, U. et al. The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. Chem. Soc. Rev. 44, 7155–7176 (2015).

    CAS  PubMed  Article  Google Scholar 

  56. Wang, C. et al. Experimental evidence on the formation of ethene through carbocations in methanol conversion over H-ZSM-5 zeolite. Chem. Eur. J. 21, 12061–12068 (2015).

    CAS  PubMed  Article  Google Scholar 

  57. Dokania, A. et al. Acidity modification of ZSM-5 for enhanced production of light olefins from CO2. J. Catal. 381, 347–354 (2020).

    CAS  Article  Google Scholar 

  58. Ramirez, A. et al. Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis. Nat. Commun. 12, 5914 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Chen, H. et al. A mechanistic study of syngas to light olefins over OXZEO bifunctional catalysts: insights into the initial carbon-carbon bond formation on the oxide. Catal. Sci. Technol. 12, 1289–1295 (2022).

    CAS  Article  Google Scholar 

  60. Gao, P. et al. DNP NMR reveals the hidden surface C–C bond growth mechanism over ZnAlOx during syngas conversion. J. Energy Chem. 67, 640–644 (2022).

    Article  Google Scholar 

  61. Haw, J. F. et al. Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. J. Am. Chem. Soc. 122, 4763–4775 (2000).

    CAS  Article  Google Scholar 

  62. Gao, P. et al. A mechanistic study of methanol-to-aromatics reaction over Ga-modified ZSM-5 zeolites: understanding the dehydrogenation process. ACS Catal. 8, 9809–9820 (2018).

    CAS  Article  Google Scholar 

  63. Hu, M. et al. Establishing a link between the dual cycles in methanol-to-olefins conversion on H-ZSM-5: aromatization of cycloalkenes. ACS Catal. 10, 4299–4305 (2020).

    CAS  Article  Google Scholar 

  64. Luzgin, M. V., Romannikov, V. N., Stepanov, A. G. & Zamaraev, K. I. Interaction of olefins with carbon monoxide on zeolite H-ZSM-5. NMR observation of the Friedel−Crafts acylation of alkenes at ambient temperature. J. Am. Chem. Soc. 118, 10890–10891 (1996).

    CAS  Article  Google Scholar 

  65. Frontier, A. J. & Hernandez, J. J. New twists in Nazarov cyclization chemistry. Acc. Chem. Res. 53, 1822–1832 (2020).

    CAS  PubMed  Article  Google Scholar 

  66. Liu, X. et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34. ACS Catal. 10, 8303–8314 (2020).

    CAS  Article  Google Scholar 

  67. Massiot, D. et al. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 40, 70–76 (2002).

    CAS  Article  Google Scholar 

  68. Hou, G., Yan, S., Trébosc, J., Amoureux, J.-P. & Polenova, T. Broadband homonuclear correlation spectroscopy driven by combined R2nv sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids. J. Magn. Reson. 232, 18–30 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Shu, J., Li, P., Chen, Q. & Zhang, S. Quantitative measurement of polymer compositions by NMR spectroscopy:targeting polymers with marked difference in phase mobility. Macromolecules 43, 8993–8996 (2010).

    CAS  Article  Google Scholar 

  70. Zhang, R., Mroue, K. H. & Ramamoorthy, A. Hybridizing cross-polarization with NOE or refocused-INEPT enhances the sensitivity of MAS NMR spectroscopy. J. Magn. Reson. 266, 59–66 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Kulminskaya, N. et al. Access to side-chain carbon information in deuterated solids under fast MAS through non-rotor-synchronized mixing. Chem. Commun. 52, 268–271 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Programme of China (no. 2021YFA1502803), National Natural Science Foundation of China (grant nos. 21773230, 91945302, 21902158 and 22002165), LiaoNing Revitalization Talents Programme (no. XLYC1807207), China National Postdoctoral Programme for Innovative Talents (no. BX20190321) and the China Postdoctoral Science Foundation (nos. 2019M651161 and 2019M651154). P.G. thanks the Special Assistant Funding of the Chinese Academy of Science. The authors thank Y. Ding for NH3-TPD measurements and S. Li for help in the operation of SEM.

Author information

Authors and Affiliations

Authors

Contributions

G.H. conceived the project. G.H., P.G. and Y.J. designed the experiments, analysed the data and wrote the paper. Y.J. and P.G. prepared the catalysts, conducted catalytic tests and carried out NMR measurements. Y.J. carried out structural characterization of catalysts. Z.Z. and K.C. participated in experiment design. D.X. carried out partial NMR measurements. Q.H. and H.C. prepared partial catalysts. Q.H. participated in TEM measurement. All authors participated in the analysis of experimental data and discussion of the results.

Corresponding author

Correspondence to Guangjin Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27, Notes 1–5 and Tables 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Gao, P., Zhao, Z. et al. Oxygenate-based routes regulate syngas conversion over oxide–zeolite bifunctional catalysts. Nat Catal 5, 594–604 (2022). https://doi.org/10.1038/s41929-022-00806-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00806-2

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing