Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts

Abstract

The electroreduction of CO2, driven by renewable electricity, can be used to sustainably generate synthetic fuels. So far, only copper-based materials have been used to catalyse the formation of multicarbon products, albeit limited to C2 or C3 molecules. Herein, we disclose that inorganic nickel oxygenate-derived electrocatalysts can generate linear and branched C3 to C6 hydrocarbons with sustained Faradaic efficiencies of up to 6.5%, contrasting with metallic nickel, which is practically inactive. Operando X-ray absorption spectroscopy, electrochemical CO stripping and density functional theory pinpoint the presence of stable, polarized Niδ+ active sites associated with Ni–O bonds, which bind CO moderately. The reduction of selected C1 molecules and density functional theory simulations suggest that the Niδ+ sites promote a mechanism reminiscent of the Fischer–Tropsch synthesis: COOH + CHx coupling followed by successive CHx insertions. Our results disclose atom polarization to be the key that prevents the CO poisoning of nickel and enables CO2 reduction to a wider pool of valuable products.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: CO2 electroreduction to hydrocarbons on Ni catalysts.
Fig. 2: Hydrocarbon formation on Cu and PD-Ni.
Fig. 3: Redox response and operando X-ray absorption spectroscopy studies.
Fig. 4: CO adsorption properties of metallic nickel, s-Ni and PD-Ni catalysts.
Fig. 5: Experimental screening of key intermediates in the CO2RR on PD-Ni.
Fig. 6: Impact of Ni polarization on the adsorption and insertion steps.
Fig. 7: First C–C coupling steps in the CO2RR on polarized nickel and copper surfaces.

Data availability

The experimental data relating to the figures and tables presented in this manuscript are available online in the Zenodo repository at https://doi.org/10.5281/zenodo.6331376. The DFT datasets generated during the current study are available in the ioChem-BD database54 at https://doi.org/10.19061/iochem-bd-1-200 (ref. 55). All other raw data are available from the corresponding authors upon reasonable request.

References

  1. Galán-Martín, Á. et al. Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries. One Earth 4, 565–583 (2021).

    Article  Google Scholar 

  2. Bagger, A., Ju, W., Varela, A. S., Strasser, P. & Rossmeisl, J. Electrochemical CO2 reduction: a classification problem. ChemPhysChem 18, 3266–3273 (2017).

    CAS  PubMed  Article  Google Scholar 

  3. Garcia de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm–2. Science 367, 661–666 (2020).

    CAS  PubMed  Article  Google Scholar 

  4. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    CAS  PubMed  Article  Google Scholar 

  5. Chen, X. et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4, 20–27 (2020).

    Article  CAS  Google Scholar 

  6. Wang, X. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020).

    CAS  Article  Google Scholar 

  7. Torelli, D. A. et al. Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 6, 2100–2104 (2016).

    CAS  Article  Google Scholar 

  8. Calvinho, K. U. D. et al. Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ. Sci. 11, 2550–2559 (2018).

    CAS  Article  Google Scholar 

  9. Kudo, A., Nakagawa, S., Tsuneto, A. & Sakata, T. Electrochemical reduction of high pressure CO2 on Ni electrodes. J. Electrochem. Soc. 140, 1541–1545 (1993).

    CAS  Article  Google Scholar 

  10. Hori, Y., Wakebe, H., Tsukamoto, T. & Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833–1839 (1994).

    CAS  Article  Google Scholar 

  11. Lee, S., Kim, D. & Lee, J. Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced bi-phasic Cu2O-Cu catalyst. Angew. Chem. Int. Ed. 127, 14914–14918 (2015).

    Article  Google Scholar 

  12. Bohra, D., Chaudhry, J. H., Burdyny, T., Pidko, E. A. & Smith, W. A. Modeling the electrical double layer to understand the reaction environment in a CO2 electrocatalytic system. Energy Environ. Sci. 12, 3380–3389 (2019).

    CAS  Article  Google Scholar 

  13. Hori, Y., Murata, A. & Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 1 85, 2309–2326 (1989).

    CAS  Article  Google Scholar 

  14. Xiao, H., Goddard, W. A., Cheng, T. & Liu, Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl Acad. Sci. USA 114, 6685–6688 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Arán-Ais, R. M., Scholten, F., Kunze, S., Rizo, R. & Roldan Cuenya, B. The role of in situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat. Energy 5, 317–325 (2020).

    Article  CAS  Google Scholar 

  16. Huang, L. F., Hutchison, M. J., Santucci, R. J., Scully, J. R. & Rondinelli, J. M. Improved electrochemical phase diagrams from theory and experiment: the Ni–water system and its complex compounds. J. Phys. Chem. C 121, 9782–9789 (2017).

    CAS  Article  Google Scholar 

  17. Stohr, J. et al. Extended absorption fine structure studies above the carbon, nitrogen, oxygen, and fluorine K absorption edges. Appl. Opt. 19, 3911–3919 (1980).

    CAS  PubMed  Article  Google Scholar 

  18. Stöhr, J. Surface EXAFS studies using electron yield spectroscopy: oxygen on Ni (100). Jpn. J. Appl. Phys. 17, 217–220 (1978).

    Article  Google Scholar 

  19. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    CAS  PubMed  Article  Google Scholar 

  20. de Amorim, R. V. et al. CO, NO, and SO adsorption on Ni nanoclusters: a DFT investigation. Dalton Trans. 49, 6407–6417 (2020).

    PubMed  Article  Google Scholar 

  21. Calle-Vallejo, F., Martinez, J. I., Garcia-Lastra, J. M., Sautet, P. & Loffreda, D. Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers. Angew. Chem. Int. Ed. 53, 8316–8319 (2014).

    CAS  Article  Google Scholar 

  22. Pérez-Ramírez, J. & López, N. Strategies to break linear scaling relationships. Nat. Catal. 2, 971–976 (2019).

    Article  Google Scholar 

  23. Mayrhofer, K. J. J. et al. CO surface electrochemistry on Pt-nanoparticles: a selective review. Electrochim. Acta 50, 5144–5154 (2005).

    CAS  Article  Google Scholar 

  24. Rudi, S., Cui, C., Gan, L. & Strasser, P. Comparative study of the electrocatalytically active surface areas (ECSAs) of Pt alloy nanoparticles evaluated by Hupd and CO-stripping voltammetry. Electrocatalysis 5, 408–418 (2014).

    CAS  Article  Google Scholar 

  25. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    CAS  Article  Google Scholar 

  26. Zhang, H., Li, J., Cheng, M.-J. & Lu, Q. CO electroreduction: current development and understanding of Cu-based catalysts. ACS Catal. 9, 49–65 (2018).

    Article  CAS  Google Scholar 

  27. Liu, X. et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat. Commun. 10, 32 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  Article  Google Scholar 

  29. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput.Chem. 27, 1787–1799 (2006).

    CAS  PubMed  Article  Google Scholar 

  30. Bucko, T., Hafner, J., Lebegue, S. & Angyan, J. G. Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 114, 11814–11824 (2010).

    CAS  PubMed  Article  Google Scholar 

  31. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  32. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    CAS  Article  Google Scholar 

  33. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    CAS  PubMed  Article  Google Scholar 

  34. Blyholder, G. Molecular orbital view of chemisorbed carbon monoxide. J. Phys. Chem. 68, 2772–2777 (1964).

    CAS  Article  Google Scholar 

  35. Kortlever, R., Shen, J., Schouten, K. J., Calle-Vallejo, F. & Koper, M. T. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    CAS  PubMed  Article  Google Scholar 

  36. Handoko, A. D., Wei, F., Jenndy, Yeo, B. S. & Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018).

    CAS  Article  Google Scholar 

  37. Garza, A. J., Bell, A. T. & Head-Gordon, M. Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8, 1490–1499 (2018).

    CAS  Article  Google Scholar 

  38. Pablo-García, S. et al. Mechanistic routes toward C3 products in copper-catalysed CO2 electroreduction. Catal. Sci. Technol. 12, 409–417 (2022).

    Article  Google Scholar 

  39. Abd El-Lateef, H. M., Almulhim, N. F., Alaulamie, A. A., Saleh, M. M. & Mohamed, I. M. A. Design of ultrafine nickel oxide nanostructured material for enhanced electrocatalytic oxidation of urea: physicochemical and electrochemical analyses. Colloids Surf.Colloids Surf. A 585, 124092 (2020).

    CAS  Article  Google Scholar 

  40. El-Refaei, S. M., Awad, M. I., El-Anadouli, B. E. & Saleh, M. M. Electrocatalytic glucose oxidation at binary catalyst of nickel and manganese oxides nanoparticles modified glassy carbon electrode: optimization of the loading level and order of deposition. Electrochim. Acta 92, 460–467 (2013).

    CAS  Article  Google Scholar 

  41. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS  PubMed  Article  Google Scholar 

  42. Cossar, E., Houache, M. S. E., Zhang, Z. & Baranova, E. A. Comparison of electrochemical active surface area methods for various nickel nanostructures. J. Electroanal. Chem. 870, 114246 (2020).

    CAS  Article  Google Scholar 

  43. Ho, J. C. K. & Piron, D. L. Active surface area in oxide electrodes by overpotential deposited oxygen species for the oxygen evolution reaction. J. Appl. Electrochem. 26, 515–521 (1996).

    CAS  Article  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  45. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  46. Almora-Barrios, N., Carchini, G., Błońsk, P. & López, N. Costless drivation of dispersion coefficients for metal surfaces. J. Chem. Theory Comput. 10, 5002–5009 (2014).

    CAS  PubMed  Article  Google Scholar 

  47. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  48. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  49. Garcés-Pineda, F. A., Blasco-Ahicart, M., Nieto-Castro, D., López, N. & Galán-Mascarós, J. R. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 4, 519–525 (2019).

    Article  CAS  Google Scholar 

  50. Rohrbach, A., Hafner, J. & Kresse, G. Molecular adsorption on the surface of strongly correlated transition-metal oxides: a case study for CO/NiO(100). Phys. Rev. B 69, 075413 (2004).

    Article  CAS  Google Scholar 

  51. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS  Article  Google Scholar 

  52. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  53. Makov, G. & Payne, M. C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995).

    CAS  Article  Google Scholar 

  54. Alvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).

    CAS  PubMed  Article  Google Scholar 

  55. Dattila, F. eFTS nickel. ioChem-BD https://doi.org/10.19061/iochem-bd-1-200 (2021).

Download references

Acknowledgements

We acknowledge financial support from the National University of Singapore, Green Energy program (R143-000-A64-114 and R143-000-B52-114), ETH Zürich (research grant ETH-47 19-1) and the Swiss National Science Foundation through the National Center of Competence in Research NCCR Catalysis (grant 180544). F.D. and N.L. thank the Spanish Ministry of Science and Innovation (RTI2018-101394-B-I00), Severo Ochoa (CEX2019-000925-S) for financial support. The Barcelona Supercomputing Center (BSC-RES) is acknowledged for providing generous computational resources. We thank J. Li of the Department of Chemistry, Faculty of Science, National University of Singapore for performing part of the SEM analysis.

Author information

Authors and Affiliations

Authors

Contributions

B.S.Y. and J.P.-R. coordinated the project. Y.Z. designed the experiments and analysed the results. F.D. and N.L. carried out the computational simulations. A.J.M. assisted with the CO stripping experiments and developed the concept of process integration. S.X. assisted with the XAFS measurements. All authors read and commented on the manuscript.

Corresponding authors

Correspondence to Núria López, Javier Pérez-Ramírez or Boon Siang Yeo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Rosa Arán-Ais, Chuan-Xin He and Yan Zhao for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 CO2RR products and their corresponding Faradaic efficiencies on inorganic nickel oxygenate-derived electrocatalysts and sputter-deposited Ni (s-Ni)a
Extended Data Table 2 CO2RR products and their corresponding Faradaic efficiencies on PD-Ni and Cua

Supplementary Information

Supplementary Information

Supplementary Notes 1–3, Figs. 1–51, Tables 1–15 and Equations 1–7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Martín, A.J., Dattila, F. et al. Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts. Nat Catal 5, 545–554 (2022). https://doi.org/10.1038/s41929-022-00803-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00803-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing