Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanically interlocked pyrene-based photocatalysts

Abstract

Triplet excited-state organic chromophores present countless opportunities for applications in photocatalysis. Here we describe an approach to the engineering of the triplet excited states of aromatic chromophores, which involves incorporating pyrene into pyridinium-containing mechanically interlocked molecules (MIMs). The π-extended nature of the pyrenes enforces [π···π] stacking, affording an efficient synthesis of tetrachromophoric octacationic homo[2]catenanes. These MIMs generate triplet populations and efficient intersystem crossing on account of the formation of a mixed charge-transfer/exciplex electronic state and a nanoconfinement effect, which leads to a high level of protection of the triplet state and extends the triplet lifetimes and yields. These compounds display excellent catalytic activity in photo-oxidation, as demonstrated by the aerobic oxidation of a sulfur-mustard simulant. This research highlights the benefits of using the mechanical bond to fine-tune the triplet photophysics of existing aromatic chromophores, providing an avenue for the development of unexplored MIM-based photosensitizers and photocatalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic route for the preparation of the cyclophanes PyBox4+ and homo[2]catenanes PyHC8+.
Fig. 2: 1H NMR spectra of the cyclophanes and homo[2]catenanes.
Fig. 3: Crystal structures of the cyclophanes.
Fig. 4: Solid-state (super)structure of the homo[2]catenane 2,7-2,7PyHC8+.
Fig. 5: Steady-state absorption and fluorescence spectra.
Fig. 6: Calculated energy-level diagrams of the singlet (Sn) and triplet (Tn) transitions.
Fig. 7: Photosensitized catalysis of CEES using the cyclophanes and the homo[2]catenanes as photocatalysts.

Similar content being viewed by others

Data availability

Source data related to this paper may be requested from the authors. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2098309 (2,7-2,7PyBox·4PF6), 2098310 (1,6-1,6PyBox·4PF6) and 2098670 (2,7-2,7PyHC·8PF6). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures.

References

  1. Figueira-Duarte, T. M. & Müllen, K. Pyrene-based materials for organic electronics. Chem. Rev. 111, 7260–7314 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Mateo-Alonso, A. Pyrene-fused pyrazaacenes: from small molecules to nanoribbons. Chem. Soc. Rev. 43, 6311–6324 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Islam, M. M., Hu, Z., Wang, Q., Redshaw, C. & Feng, X. Pyrene-based aggregation-induced emission luminogens and their applications. Mater. Chem. Front. 3, 762–781 (2019).

    Article  CAS  Google Scholar 

  4. Kinik, F. P., Ortega-Guerrero, A., Ongari, D., Ireland, C. P. & Smit, B. Pyrene-based metal-organic frameworks: from synthesis to applications. Chem. Soc. Rev. 50, 3143–3177 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Maeda, H. et al. Alkynylpyrenes as improved pyrene-based biomolecular probes with the advantages of high fluorescence quantum yields and long absorption/emission wavelengths. Chem. Eur. J. 12, 824–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Zych, D. Non-K region disubstituted pyrenes (1,3-, 1,6- and 1,8-) by (hetero)aryl groups. Molecules 24, 2551 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  7. Zych, D. & Slodek, A. Pyrene derivatives with two types of substituents at positions 1, 3, 6 and 8—fad or necessity? RSC Adv. 9, 24015–24024 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chang, X. et al. Coordination-driven self-assembled metallacycles incorporating pyrene: fluorescence mutability, tunability and aromatic amine sensing. J. Am. Chem. Soc. 141, 1757–1765 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, Z. et al. Hierarchical self-assembly of a pyrene-based discrete organoplatinum(II) double-metallacycle with triflate anions via hydrogen bonding and its tunable fluorescence emission. J. Am. Chem. Soc. 142, 13689–13694 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Gan, K. P., Yoshio, M. & Kato, T. Columnar liquid-crystalline assemblies of X-shaped pyrene-oligothiophene conjugates: photoconductivities and mechanochromic functions. J. Mater. Chem. C. 4, 5073–5080 (2016).

    Article  CAS  Google Scholar 

  11. Feng, X., Hu, J.-Y., Redshaw, C. & Yamato, T. Functionalization of pyrene to prepare luminescent materials—typical examples of synthetic methodology. Chem. Eur. J. 22, 11898–11916 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Kapf, A. et al. Alkyloxy modified pyrene fluorophores with tunable photophysical and crystalline properties. N. J. Chem. 43, 6361–6371 (2019).

    Article  CAS  Google Scholar 

  13. Hayer, A. et al. Highly fluorescent crystalline and liquid crystalline columnar phases of pyrene-based structures. J. Phys. Chem. B 110, 7653–7659 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Winnik, F. M. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chem. Rev. 93, 587–614 (1993).

    Article  CAS  Google Scholar 

  15. Pokhrel, M. R. & Bossmann, S. H. Synthesis, characterization and first application of high molecular weight polyacrylic acid derivatives possessing perfluorinated side chains and chemically linked pyrene labels. J. Phys. Chem. B 104, 2215–2223 (2000).

    Article  CAS  Google Scholar 

  16. Li, D. et al. Inorganic-organic hybrid vesicles with counterion- and pH-controlled fluorescent properties. J. Am. Chem. Soc. 133, 14010–14016 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Ni, X.-L., Wang, S., Zeng, X., Tao, Z. & Yamato, T. Pyrene-linked triazole-modified homooxacalix[3]arene: a unique C3 symmetry ratiometric fluorescent chemosensor for Pb2+. Org. Lett. 13, 552–555 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Ueno, A., Suzuki, I. & Osa, T. Host-guest sensory systems for detecting organic compounds by pyrene excimer fluorescence. Anal. Chem. 62, 2461–2466 (1990).

    Article  CAS  Google Scholar 

  19. Ghosh, P. et al. ‘Extra stabilisation’ of a pyrene based molecular couple by γ-cyclodextrin in the excited electronic state. Phys. Chem. Chem. Phys. 14, 11500–11507 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Vullev, V. I., Jiang, H. & Jones, G. in Advanced Concepts in Fluorescence Sensing: Part B: Macromolecular Sensing (eds Geddes, C. D. & Lakowicz, J. R.) 211–239 (Springer, 2005).

  21. McNelles, S. A., Thoma, J. L., Adronov, A. & Duhamel, J. Quantitative characterization of the molecular dimensions of flexible dendritic macromolecules in solution by pyrene excimer fluorescence. Macromolecules 51, 1586–1590 (2018).

    Article  CAS  Google Scholar 

  22. Takaya, T. et al. Excited-state dynamics of pyrene incorporated into poly(substituted methylene)s: effects of dense packing of pyrenes on excimer formation. Macromolecules 51, 5430–5439 (2018).

    Article  CAS  Google Scholar 

  23. Hu, J.-Y. et al. A single-molecule excimer-emitting compound for highly efficient fluorescent organic light-emitting devices. Chem. Commun. 48, 8434–8436 (2012).

    Article  CAS  Google Scholar 

  24. Jiang, W. et al. A single-molecule conformation modulating crystalline polymorph of a physical ππ pyrene dimer: blue and green emissions of a pyrene excimer. J. Mater. Chem. C 8, 3367–3373 (2020).

    Article  CAS  Google Scholar 

  25. Miyoshi, N. & Tomita, G. Production and reaction of singlet oxygen in aqueous micellar solutions using pyrene as photosensitizer. Z. Naturforsch. B 33, 622–627 (1978).

    Article  Google Scholar 

  26. Liu, Y. et al. Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal-organic framework. J. Mater. Chem. A 4, 13809–13813 (2016).

    Article  CAS  Google Scholar 

  27. Atilgan, A., Islamoglu, T., Howarth, A. J., Hupp, J. T. & Farha, O. K. Detoxification of a sulfur mustard simulant using a BODIPY-functionalized zirconium-based metal-organic framework. ACS Appl. Mater. Interfaces 9, 24555–24560 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Howarth, A. J. et al. Postsynthetic incorporation of a singlet oxygen photosensitizer in a metal-organic framework for fast and selective oxidative detoxification of sulfur mustard. Chem. Eur. J. 23, 214–218 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. McClure, D. S. Triplet‐singlet transitions in organic molecules. Lifetime measurements of the triplet state. J. Chem. Phys. 17, 905–913 (1949).

    Article  CAS  Google Scholar 

  30. Kasha, M. Collisional perturbation of spin‐orbital coupling and the mechanism of fluorescence quenching. A visual demonstration of the perturbation. J. Chem. Phys. 20, 71–74 (1952).

    Article  CAS  Google Scholar 

  31. El‐Sayed, M. A. Effect of spin-orbit interactions on the dipolar nature of the radiative microwave zero‐field transitions in aromatic molecules. J. Chem. Phys. 60, 4502–4507 (1974).

    Article  Google Scholar 

  32. Havlas, Z. & Michl, J. Prediction of an inverse heavy-atom effect in H–C–CH2Br: bromine substituent as a π acceptor. J. Am. Chem. Soc. 124, 5606–5607 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Sasikumar, D., John, A. T., Sunny, J. & Hariharan, M. Access to the triplet excited states of organic chromophores. Chem. Soc. Rev. 49, 6122–6140 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Filatov, M. A. et al. BODIPY-pyrene and perylene dyads as heavy-atom-free singlet oxygen sensitizers. ChemPhotoChem 2, 606–615 (2018).

    Article  CAS  Google Scholar 

  35. Beldjoudi, Y. et al. Supramolecular porous organic nanocomposites for heterogeneous photocatalysis of a sulfur mustard simulant. J. Adv. Mater. 32, 2001592 (2020).

    Article  CAS  Google Scholar 

  36. Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    Article  CAS  Google Scholar 

  37. Sauvage, J.-P. From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    Article  CAS  Google Scholar 

  38. Barnes, J. C. et al. Solid-state characterization and photoinduced intramolecular electron transfer in a nanoconfined octacationic homo[2]catenane. J. Am. Chem. Soc. 136, 10569–10572 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Inouye, M. et al. A doubly alkynylpyrene-threaded [4]rotaxane that exhibits strong circularly polarized luminescence from the spatially restricted excimer. Angew. Chem. Int. Ed. 53, 14392–14396 (2014).

    Article  CAS  Google Scholar 

  40. Ryan, S. T. J. et al. Energy and electron transfer dynamics within a series of perylene diimide/cyclophane systems. J. Am. Chem. Soc. 137, 15299–15307 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Hayashi, K. et al. Observation of circularly polarized luminescence of the excimer from two perylene cores in the form of [4]rotaxane. Chem. Eur. J. 24, 14613–14616 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Sagara, Y. et al. Rotaxanes as mechanochromic fluorescent force transducers in polymers. J. Am. Chem. Soc. 140, 1584–1587 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gong, X. et al. Toward a charged homo[2]catenane employing diazaperopyrenium homophilic recognition. J. Am. Chem. Soc. 140, 6540–6544 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Sagara, Y. et al. Rotaxane-based mechanophores enable polymers with mechanically switchable white photoluminescence. ACS Cent. Sci. 5, 874–881 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. David, A. H. G., Casares, R., Cuerva, J. M., Campaña, A. G. & Blanco, V. A. [2]rotaxane-based circularly polarized luminescence switch. J. Am. Chem. Soc. 141, 18064–18074 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Özkan, M., Keser, Y., Hadi, S. E. & Tuncel, D. A. [5]rotaxane-based photosensitizer for photodynamic therapy. Eur. J. Org. Chem. 21, 3534–3541 (2019).

    Article  CAS  Google Scholar 

  47. Garci, A. et al. Mechanical-bond-induced exciplex fluorescence in an anthracene-based homo[2]catenane. J. Am. Chem. Soc. 142, 7956–7967 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Li, W.-J. et al. Rotaxane-branched dendrimers with enhanced photosensitization. J. Am. Chem. Soc. 142, 16748–16756 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Li, W.-J. et al. AIE-active chiral [3]rotaxanes with switchable circularly polarized luminescence. Angew. Chem. Int. Ed. 60, 9507–9515 (2021).

    Article  CAS  Google Scholar 

  50. Rajamalli, P. et al. Using the mechanical bond to tune the performance of a thermally activated delayed fluorescence emitter. Angew. Chem. Int. Ed. 60, 12066–12073 (2021).

    Article  CAS  Google Scholar 

  51. Stoddart, J. F. The chemistry of the mechanical bond. Chem. Soc. Rev. 38, 1802–1820 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Barin, G., Coskun, A., Fouda, M. M. G. & Stoddart, J. F. Mechanically interlocked molecules assembled by ππ recognition. ChemPlusChem 77, 159–185 (2012).

    Article  CAS  Google Scholar 

  53. Lewis, J. E. M., Galli, M. & Goldup, S. M. Properties and emerging applications of mechanically interlocked ligands. Chem. Commun. 53, 298–312 (2017).

    Article  CAS  Google Scholar 

  54. Barnes, J. C. et al. A radically configurable six-state compound. Science 339, 429–433 (2013).

    Article  CAS  Google Scholar 

  55. Jiao, Y. et al. A donor–acceptor [2]catenane for visible light photocatalysis. J. Am. Chem. Soc. 143, 8000–8010 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Barnes, J. C. et al. ExBox: a polycyclic aromatic hydrocarbon scavenger. J. Am. Chem. Soc. 135, 183–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Juríček, M. et al. Ex2Box: interdependent modes of binding in a two-nanometer-long synthetic receptor. J. Am. Chem. Soc. 135, 12736–12746 (2013).

    Article  PubMed  CAS  Google Scholar 

  58. Juríček, M. et al. An Exbox[2]catenane. Chem. Sci. 5, 2724–2731 (2014).

    Article  CAS  Google Scholar 

  59. Lu, Q. et al. Comparison study of the site-effect on regioisomeric pyridyl-pyrene conjugates: synthesis, structures and photophysical properties. J. Org. Chem. 85, 4256–4266 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Austin, A. et al. A density functional with spherical atom dispersion terms. J. Chem. Theory Comput. 8, 4989–5007 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Northwestern University (NU) for their continued support of this research. This research was also supported by the National Science Foundation under grant no. DMR-2003739 (M.R.W. and R.M.Y., photophysical studies). O.K.F. acknowledges support from the Defense Threat Reduction Agency under award no. HDTRA1-19-1-0010. L.O.J and G.C.S were supported by the Department of Energy, Office of Basic Energy Science as part of the Center for Bioinspired Energy Science under grant DE-SC0000989. We thank C. Lin for his assistance with fluorescence quantum yield measurements and S. Abid and A. H. G. David for helpful discussions. The research made use of the Integrated Molecular Structure and Educational Research Center (IMSERC) at NU, which receives support from the State of Illinois and the International Institute for Nanotechnology (IIN). The research was also supported in part through the computational resources and staff contributions provided for the Quest High Performance Computing Facility at Northwestern University, which is jointly supported by the Office of the Provost, the Office for Research, and Northwestern University Information Technology.

Author information

Authors and Affiliations

Authors

Contributions

A.G. and J.F.S. conceived the project. A.G. carried out the synthesis. J.A.W. and L.O.J. conducted the computational study. A.G. and R.M.Y. performed the optical study. A.G., Y.B. and A.A. carried out the photocatalytic experiments. M.O. contributed to the graphical design in the figures. A.G. and W.L. studied the dynamic behaviour of the catenane. C.L.S. resolved the crystal structures. M.K.-R. contributed to the HPLC, electrospray ionization mass spectrometry and NMR titrations. A.G., J.A.W., R.M.Y. and J.F.S. wrote the draft manuscript. All other co-authors contributed to various stages of manuscript preparation.

Corresponding author

Correspondence to J. Fraser Stoddart.

Ethics declarations

Competing interests

A.G. and J.F.S. have filed a patent application lodged with Northwestern University based on this work (Invention Disclosure: Disc-ID-22-04-22-002). The other authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Diego Troya and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–68, Tables 1–3, Methods and Note 1.

Supplementary Data 1

Crystal structure of 1,6-1,6PyBox

Supplementary Data 1

Crystal structure of 2,7-2,7PyBox

Supplementary Data 1

Crystal structure of 2,7-2,7PyHC

Supplementary Data 1

Atomic coordinates of DFT models

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garci, A., Weber, J.A., Young, R.M. et al. Mechanically interlocked pyrene-based photocatalysts. Nat Catal 5, 524–533 (2022). https://doi.org/10.1038/s41929-022-00799-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00799-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing