Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mo3+ hydride as the common origin of H2 evolution and selective NADH regeneration in molybdenum sulfide electrocatalysts

Abstract

Hydride transfers are key to a number of economically and environmentally important reactions, including H2 evolution and NADH regeneration. The electrochemical generation of hydrides can therefore drive the electrification of chemical reactions to improve their sustainability for a green economy. Catalysts containing molybdenum have recently been recognized as among the most promising non-precious catalysts for H2 evolution, but the mechanism by which molybdenum confers this activity remains debated. Here we show the presence of trapped Mo3+ hydride in amorphous molybdenum sulfide (a-MoSx) during the hydrogen evolution reaction and extend its catalytic role to the selective hydrogenation of the biologically important energy carrier NAD to its active 1,4-NADH form. Furthermore, this reactivity applies to other HER-active molybdenum sulfides. Our results demonstrate a direct role for molybdenum in heterogeneous H2 evolution. This mechanistic finding also reveals that molybdenum sulfides have potential as economic electrocatalysts for NADH regeneration in biocatalysis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model of molybdenum sulfides during H2 evolution.
Fig. 2: EPR and electrochemical evidence for a Mo3+ hydride in a-MoSx.
Fig. 3: Electrochemical and absorption characteristics of NMN reduction by a-MoSx.
Fig. 4: Reduction of NMN to 1,4-dihydropyridine derivative.
Fig. 5: Mo3+ hydride in the HER and biocatalysis.
Fig. 6: Electrocatalytic NADH regeneration applied to biocatalysis.

Similar content being viewed by others

Data availability

The data supporting the findings in this study are available either within the paper and its Supplementary Information or from the corresponding authors on reasonable request.

References

  1. Organization of Petroleum Exporting Countries (World Oil Outlook 2040, 2017).

  2. Roger, I., Shipman, M. A. & Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017).

    Article  CAS  Google Scholar 

  3. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).

    Article  CAS  Google Scholar 

  4. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  5. Sheldon, R. A. & Woodley, J. M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 118, 801–838 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Kibria, M. G. et al. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv. Mater. 31, 1807166 (2019).

    Article  CAS  Google Scholar 

  7. Zhang, J. et al. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Csernica, P. M. et al. Electrochemical hydrogen evolution at ordered Mo7Ni7. ACS Catal. 7, 3375–3383 (2017).

    Article  CAS  Google Scholar 

  9. Bau, J. A. et al. On the reconstruction of NiMo electrocatalysts by operando spectroscopy. J. Mater. Chem. A 7, 15031–15035 (2019).

    Article  CAS  Google Scholar 

  10. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Ding, Q., Song, B., Xu, P. & Jin, S. Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem 1, 699–726 (2016).

    Article  CAS  Google Scholar 

  13. Chia, X. & Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909 (2018).

    Article  CAS  Google Scholar 

  14. Merki, D., Fierro, S., Vrubel, H. & Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011).

    Article  CAS  Google Scholar 

  15. Tran, P. D. et al. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat. Mater. 15, 640–646 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benck, J. D., Chen, Z., Kuritzky, L. Y., Forman, A. J. & Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2, 1916–1923 (2012).

    Article  CAS  Google Scholar 

  17. Escalera‐López, D., Lou, Z. & Rees, N. V. Benchmarking the activity, stability, and inherent electrochemistry of amorphous molybdenum sulfide for hydrogen production. Adv. Energy Mater. 9, 1802614 (2019).

    Article  CAS  Google Scholar 

  18. Morales-Guio, C. G. & Hu, X. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 47, 2671–2681 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Zhuang, Z., Huang, J., Li, Y., Zhou, L. & Mai, L. The holy grail in platinum-free electrocatalytic hydrogen evolution: molybdenum-based catalysts and recent advances. ChemElectroChem 6, 3570–3589 (2019).

    Article  CAS  Google Scholar 

  20. Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Cao, Y. Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts. ACS Nano 15, 11014–11039 (2021).

    Article  CAS  Google Scholar 

  22. Lassalle-Kaiser, B. et al. Evidence from in situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst. J. Am. Chem. Soc. 137, 314–321 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Xi, F. et al. Structural transformation identification of sputtered amorphous mosx as an efficient hydrogen-evolving catalyst during electrochemical activation. ACS Catal. 9, 2368–2380 (2019).

    Article  CAS  Google Scholar 

  24. Huang, Y., Nielsen, R. J., Goddard, W. A. & Soriaga, M. P. The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2. J. Am. Chem. Soc. 137, 6692–6698 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Karunadasa, H. I., Chang, C. J. & Long, J. R. A molecular molybdenum-oxo catalyst for generating hydrogen from water. Nature 464, 1329–1333 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Prior, C. et al. EPR detection and characterisation of a paramagnetic Mo(III) dihydride intermediate involved in electrocatalytic hydrogen evolution. Dalton Trans. 45, 2399–2403 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Ahn, H. S. & Bard, A. J. Electrochemical surface interrogation of a MoS2 hydrogen-evolving catalyst: in situ determination of the surface hydride coverage and the hydrogen evolution kinetics. J. Phys. Chem. Lett. 7, 2748–2752 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Sellés Vidal, L., Kelly, C. L., Mordaka, P. M. & Heap, J. T. Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application. Biochim. Biophys. Acta Proteins Proteom. 1866, 327–347 (2018).

    Article  PubMed  CAS  Google Scholar 

  29. Wu, H. et al. Methods for the regeneration of nicotinamide coenzymes. Green. Chem. 15, 1773–1789 (2013).

    Article  CAS  Google Scholar 

  30. Faber, K. in Biotransformations in Organic Chemistry: A Textbook (ed. Faber, K.) 31–313 (Springer, 2011); https://doi.org/10.1007/978-3-642-17393-6_2

  31. Wang, X. et al. Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem. 2, 621–654 (2017).

    Article  CAS  Google Scholar 

  32. Ali, I., Khan, T. & Omanovic, S. Direct electrochemical regeneration of the cofactor NADH on bare Ti, Ni, Co and Cd electrodes: the influence of electrode potential and electrode material. J. Mol. Catal. A 387, 86–91 (2014).

    Article  CAS  Google Scholar 

  33. Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 39, 163–184 (1972).

    Article  CAS  Google Scholar 

  34. González, J. R., Alcántara, R., Tirado, J. L., Fielding, A. J. & Dryfe, R. A. W. Electrochemical interaction of few-layer molybdenum disulfide composites vs sodium: new insights on the reaction mechanism. Chem. Mater. 29, 5886–5895 (2017).

    Article  CAS  Google Scholar 

  35. Sathiya, M. et al. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat. Commun. 6, 6276 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Yin, Y. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 138, 7965–7972 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Cai, L. et al. Vacancy-Induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 137, 2622–2627 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Meija, J. et al. Isotopic compositions of the elements 2013 (IUPAC technical report). Pure Appl. Chem. 88, 293–306 (2016).

    Article  CAS  Google Scholar 

  39. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Lu, Z. et al. Ultrahigh hydrogen evolution performance of under-water ‘superaerophobic’ MoS2 nanostructured electrodes. Adv. Mater. 26, 2683–2687 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Aljarb, A. et al. Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nat. Mater. 19, 1300–1306 (2020).

  42. Busetto, L., Vaccari, A. & Martini, G. Electron spin resonance of paramagnetic species as a tool for studying the thermal decomposition of molybdenum trisulfide. J. Phys. Chem. 85, 1927–1930 (1981).

    Article  CAS  Google Scholar 

  43. Bullock, R. M. in Catalysis Without Precious Metals 51–81 (Wiley, 2010); https://doi.org/10.1002/9783527631582.ch3

  44. Micheletti Moracci, F. et al. Electrochemical reduction of 1-benzyl-3-carbamoylpyridinium chloride, a nicotinamide adenine dinucleotide model compound. J. Org. Chem. 43, 3420–3422 (1978).

    Article  CAS  Google Scholar 

  45. Schmakel, C. O., Santhanam, K. S. V. & Elving, P. J. Nicotinamide and N′‐methylnicotinamide: electrochemical redox pattern: behavior of free radical, dimeric, and dihydropyridine species. J. Electrochem. Soc. 121, 345 (1974).

    Article  CAS  Google Scholar 

  46. Erb, C. et al. Formation of N-methylnicotinamide in the brain from a dihydropyridine-type prodrug: effect on brain choline. Biochem. Pharmacol. 57, 681–684 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Burnett, J. W. H., Howe, R. F. & Wang, X. Cofactor NAD(P)H regeneration: how selective are the reactions? Trends Chem. 2, 488–492 (2020).

    Article  CAS  Google Scholar 

  48. Wilson, D. F., Erecińska, M. & Dutton, P. L. Thermodynamic relationships in mitochondrial oxidative phosphorylation. Annu. Rev. Biophysics Bioeng. 3, 203–230 (1974).

    Article  CAS  Google Scholar 

  49. Godtfredsen, S. E., Ottesen, M. & Andersen, N. R. On the mode of formation of 1,6-dihydro-NAD in NADH preparations. Carlsberg Res. Commun. 44, 65 (1979).

    Article  CAS  Google Scholar 

  50. Burnett, J. W. H. et al. Directing the H2-driven selective regeneration of NADH via Sn-doped Pt/SiO2. Green. Chem. 24, 1451–1455 (2022).

  51. Steckhan, E. in Electrochemistry V (ed. Steckhan, E.) 83–111 (Springer, 1994); https://doi.org/10.1007/3-540-57729-7_3

  52. Ali, I., Soomro, B. & Omanovic, S. Electrochemical regeneration of NADH on a glassy carbon electrode surface: the influence of electrolysis potential. Electrochem. Commun. 13, 562–565 (2011).

    Article  CAS  Google Scholar 

  53. Forni, L. G. & Willson, R. L. Thiyl and phenoxyl free radicals and NADH Direct observation of one-electron oxidation. Biochem. J. 240, 897–903 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vera-Hidalgo, M., Giovanelli, E., Navío, C. & Pérez, E. M. Mild covalent functionalization of transition metal dichalcogenides with maleimides: a ‘click’ reaction for 2H-MoS2 and WS2. J. Am. Chem. Soc. 141, 3767–3771 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Deng, Y. et al. Operando raman spectroscopy of amorphous molybdenum sulfide (MoSx) during the electrochemical hydrogen evolution reaction: identification of sulfur atoms as catalytically active sites for H+ reduction. ACS Catal. 6, 7790–7798 (2016).

    Article  CAS  Google Scholar 

  56. Chen, J. et al. Ag@MoS2 core–shell heterostructure as sers platform to reveal the hydrogen evolution active sites of single-layer MoS2. J. Am. Chem. Soc. 142, 7161–7167 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Ting, L. R. L. et al. Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal. 6, 861–867 (2016).

    Article  CAS  Google Scholar 

  58. Han, J. et al. Design, synthesis, and biological activity of novel dicoumarol glucagon-like peptide 1 conjugates. J. Med. Chem. 56, 9955–9968 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Fu, X. et al. Targeted determination of tissue energy status by LC-MS/MS. Anal. Chem. 91, 5881–5887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by King Abdullah University of Science and Technology (KAUST). J.A.B. acknowledges S. Sioud from KAUST Analytical Core Labs for assistance with UHPLC/MS, and D. Renn of KAUST for assistance with procuring materials, images and equipment for biocatalytic experiments. V.T. and A.A. are indebted to the support from the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under award no. OSR-2018-CARF/CCF-3079.

Author information

Authors and Affiliations

Authors

Contributions

J.A.B. and M.R. conceived and designed the experiments and wrote the manuscript. J.A.B. performed the experiments and analysed the data. A.-H.E. assisted with the design and carrying out of the EPR and NMR experiments. P.N. assisted with the design of the NMR experiments for NMN reduction. A.A.A. and V.T. provided defect-free MoS2. J.A.B, V.T., and M.R. discussed and revised the manuscript. All authors read the final manuscript.

Corresponding authors

Correspondence to Jeremy A. Bau or Magnus Rueping.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Vasily Oganesyan, Jiafu Shi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, and Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bau, J.A., Emwas, AH., Nikolaienko, P. et al. Mo3+ hydride as the common origin of H2 evolution and selective NADH regeneration in molybdenum sulfide electrocatalysts. Nat Catal 5, 397–404 (2022). https://doi.org/10.1038/s41929-022-00781-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00781-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing