Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enantioselective synthesis of amino acids from ammonia


Metal-catalysed reactions involving ammonia gas are plagued by ammonia’s strong Lewis basicity, which leads to poor chemoselectivity and enantioselectivity. Here we introduce a strategy for preparing chiral α-amino acids directly from ammonia. By the cooperative action of copper complexes and chiral hydrogen-bond donors, enantioselective insertion of carbenes into the N–H bond of ammonia can construct C–N bonds in excellent yield and enantioselectivity. Using this method, we coupled a wide variety of diazoesters with ammonia to produce natural and non-natural chiral α-amino acids, which have a wide range of applications in pharmaceutical and biochemistry research. Our work provides a general method for asymmetric transformations involving ammonia.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enantioselective transformation of ammonia: challenges and strategies.
Fig. 2: Mechanistic studies.
Fig. 3: Scope of α-diazoesters in the enantioselective N–H insertion with ammonia.
Fig. 4: Synthetic applications of the reaction.

Data availability

Data relating to the materials and methods, optimization studies, experimental procedures, DFT calculations, atomic coordinates, HPLC spectra and NMR spectra are available in the Supplementary Information. All data is available from the authors upon reasonable request.


  1. Ashida, Y., Arashiba, K., Nakajima, K. & Nishibayashi, Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature 568, 536–540 (2019).

    Article  CAS  Google Scholar 

  2. Valera-Medina, A., Xiao, H., Owen-Jones, M., David, W. I. F. & Bowen, P. J. Ammonia for power. Prog. Energy Combust. Sci. 69, 63–102 (2018).

    Article  Google Scholar 

  3. Trowbridge, A., Walton, S. M. & Gaunt, M. J. New strategies for the transition-metal catalyzed synthesis of aliphatic amines. Chem. Rev. 120, 2613–2692 (2020).

    Article  CAS  Google Scholar 

  4. Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).

    Article  CAS  Google Scholar 

  5. Nagano, T. & Kobayashi, S. Palladium-catalyzed allylic amination using aqueous ammonia for the synthesis of primary amines. J. Am. Chem. Soc. 131, 4200–4201 (2009).

    Article  CAS  Google Scholar 

  6. Pouy, M. J., Stanley, L. M. & Hartwig, J. F. Enantioselective iridium-catalyzed monoallylation of ammonia. J. Am. Chem. Soc. 131, 11312–11313 (2009).

    Article  CAS  Google Scholar 

  7. Klinkenberg, J. L. & Hartwig, J. F. Catalytic organometallic reactions of ammonia. Angew. Chem. Int. Ed. 50, 86–95 (2011).

    Article  CAS  Google Scholar 

  8. Gallardo-Donaire, J. et al. Direct asymmetric ruthenium-catalyzed reductive amination of alkyl–aryl ketones with ammonia and hydrogen. J. Am. Chem. Soc. 140, 355–361 (2018).

    Article  CAS  Google Scholar 

  9. McGrath, N. A., Brichacek, M. & Njardarson, J. T. A graphical journey of innovative organic architectures that have improved our lives. J. Chem. Educ. 87, 1348–1349 (2010).

    Article  CAS  Google Scholar 

  10. Yin, Q., Shi, Y., Wang, J. & Zhang, X. Direct catalytic asymmetric synthesis of α-chiral primary amines. Chem. Soc. Rev. 49, 6141–6153 (2020).

    Article  Google Scholar 

  11. Nugent, T. C. Chiral Amine Synthesis: Methods, Developments and Applications (Wiley VCH, 2010).

  12. Bezdek, M. J., Guo, S. & Chirik, P. J. Coordination-induced weakening of ammonia, water, and hydrazine X–H bonds in a molybdenum complex. Science 354, 730–733 (2016).

    Article  CAS  Google Scholar 

  13. Huang, L., Arndt, M., Gooßen, K., Heydt, H. & Gooßen, L. J. Late transition metal-catalyzed hydroamination and hydroamidation. Chem. Rev. 115, 2596–2697 (2015).

    Article  CAS  Google Scholar 

  14. Gillingham, D. & Fei, N. Catalytic X–H insertion reactions based on carbenoids. Chem. Soc. Rev. 42, 4918–4931 (2013).

    Article  CAS  Google Scholar 

  15. Brandenberg, O. F., Fasan, R. & Arnold, F. H. Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions. Curr. Opin. Biotechnol. 47, 102–111 (2017).

    Article  CAS  Google Scholar 

  16. Trofimenko, S. Scorpionates: Polypyrazolylborate Ligands and Their Coordination Chemistry (Imperial College Press, 1999).

  17. Zhu, S.-F. & Zhou, Q.-L. Transition-metal-catalyzed enantioselective heteroatom–hydrogen bond insertion reactions. Acc. Chem. Res. 45, 1365–1377 (2012).

    Article  CAS  Google Scholar 

  18. Ford, A. et al. Modern organic synthesis with α-diazocarbonyl compounds. Chem. Rev. 115, 9981–10080 (2015).

    Article  CAS  Google Scholar 

  19. Ren, Y.-Y., Zhu, S.-F. & Zhou, Q.-L. Chiral proton-transfer shuttle catalysts for carbene insertion reactions. Org. Biomol. Chem. 16, 3087–3094 (2018).

    Article  CAS  Google Scholar 

  20. Li, M.-L., Yu, J.-H., Li, Y.-H., Zhu, S.-F. & Zhou, Q.-L. Highly enantioselective carbene insertion into N–H bonds of aliphatic amines. Science 366, 990–994 (2019).

    Article  CAS  Google Scholar 

  21. Ovian, J. M. & Jacobsen, E. N. A catalytic one–two punch. Science 366, 948–949 (2019).

    Article  CAS  Google Scholar 

  22. Zuend, S. J. & Jacobsen, E. N. Mechanism of amido-thiourea catalyzed enantioselective imine hydrocyanation: transition state stabilization via multiple non-covalent interactions. J. Am. Chem. Soc. 131, 15358–15374 (2009).

    Article  CAS  Google Scholar 

  23. Anderson, R. J., Bendell, D., Groundwater, P. W. & Abel, E. W. Organic Spectroscopic Analysis (Royal Society of Chemistry, 2004).

  24. Matthews, W. S. et al. Equilibrium acidities of carbon acids. VI. Establishment of an absolute scale of acidities in dimethyl sulfoxide solution. J. Am. Chem. Soc. 97, 7006–7014 (1975).

    Article  CAS  Google Scholar 

  25. Shields, G. & Seybold, P. Computational Approaches to Predict pKa Values (CRC Press, 2013).

  26. Tsuji, N. et al. Activation of olefins via asymmetric Brønsted acid catalysis. Science 359, 1501–1505 (2018).

    Article  CAS  Google Scholar 

  27. Properzi, R. et al. Catalytic enantiocontrol over a non-classical carbocation. Nat. Chem. 12, 1174–1179 (2020).

    Article  CAS  Google Scholar 

  28. Doyle, A. G. & Jacobsen, E. N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 107, 5713–5743 (2007).

    Article  CAS  Google Scholar 

  29. Brak, K. & Jacobsen, E. N. Asymmetric ion-pairing catalysis. Angew. Chem. Int. Ed. 52, 534–561 (2013).

    Article  CAS  Google Scholar 

  30. Anslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry 466 (University Science Books, 2006).

  31. Lefebvre, C. et al. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys. Chem. Chem. Phys. 19, 17928–17936 (2017).

    Article  CAS  Google Scholar 

  32. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  Google Scholar 

  33. Jensen, K. H. & Sigman, M. S. Evaluation of catalyst acidity and substrate electronic effects in a hydrogen bond-catalyzed enantioselective reaction. J. Org. Chem. 75, 7194–7201 (2010).

    Article  CAS  Google Scholar 

  34. Lang, K. & Chin, J. W. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 114, 4764–4806 (2014).

    Article  CAS  Google Scholar 

  35. Wang, Z., Xu, W., Liu, L. & Zhu, T. F. A synthetic molecular system capable of mirror-image genetic replication and transcription. Nat. Chem. 8, 698–704 (2016).

    Article  CAS  Google Scholar 

Download references


We thank the National Natural Science Foundation of China (21790332, 91956000) for financial support. We thank the Computational Chemistry Commune ( for help with the DFT calculation.

Author information

Authors and Affiliations



Q.-L.Z. conceived the study. M.-L.L. and Q.-L.Z. designed the experiments and analysed the data. M.-L.L. and J.-B. P. performed the reactions and the mechanistic and DFT studies. M.-L.L., J.-B. P. and Q.-L.Z. wrote the manuscript.

Corresponding author

Correspondence to Qi-Lin Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Takashi Ohshima, Zhixiang Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Optimization of reaction conditions for enantioselective carbene insertion into N–H bond of NH3.

Reaction conditions: ammonia (0.6 mmol, 0.3 M in MTBE), α-diazoester (0.2 mmol), CuI (5 mol %), Ligand (6 mol %), HBDs (6 mol %), 2 ml MTBE, 25 °C. Isolated yields were given. The ee values were determined by high-performance liquid chromatography after benzylation of products. See Supplementary tables 17 for details.

Extended Data Fig. 2 Different conformations of the transient states for the proton transfer catalysed by Cu-bonded HBD-1.

Density functional theory calculations performed at the b3lyp-D3(BJ)/def2tzvpp (SMD-Et2O)//b3lyp-D3(BJ)/def2svp (gas) level. See Supplementary Figs. 1319 for detailed calculation process and method.

Extended Data Fig. 3 The independent gradient model analysis for TSRaCu-I and TSSaCu-I.

The analysis was performed with Multiwfn 3.7 program to investigate the weak interaction between the thiourea backbone of HBD-1 and the ester group of ylide in the major transition state. Graphical structures were visualized with VMD (Version 1.9.3).

Extended Data Fig. 4 Dynamic experiments.

Kinetic profiles of N–H insertion reaction of diazoester and NH3. See Supplementary Figs. 2024 for experimental details.

Extended Data Fig. 5 Proposed catalytic cycle for the enantioselective carbene insertion into N–H bond of NH3.

The Tp*Cu–HBD-1 complex serves as the resting-state of the catalyst for the formation of a carbene intermediate. After nucleophilic attack of ammonia on the carbene, Tp*Cu dissociates to form an ammonium ylide intermediate, which is intercepted by the Tp*Cu–HBD-1 complex in the enantioselectivity-determining proton-transfer reaction.

Supplementary information

Supplementary Information

Supplementary Methods, references, Figs. 1–24 and Tables 1–12.

Supplementary Data

Computational data for Cartesian coordinates of optimized structures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, ML., Pan, JB. & Zhou, QL. Enantioselective synthesis of amino acids from ammonia. Nat Catal 5, 571–577 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing