Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition


Exploiting nature’s catalysts for non-natural transformations that are inaccessible to chemocatalysis is highly desirable but challenging. On the one hand, the widespread nicotinamide-dependent oxidoreductases have not been utilized for single-electron-transfer-induced bimolecular cross-couplings; on the other, the addition of catalytic asymmetric radical conjugate to terminal alkenes remains a challenge owing to strong racemic background reaction and unselective termination of prochiral radical species. Here we report a chemomimetic biocatalysitic approach for construction of alpha-carbonyl stereocentres via an unnatural intermolecular conjugate addition of N-(acyloxy)phthalimides-derived radicals with acceptor-substituted terminal alkenes, by combination of visible-light excitation and nicotinamide-dependent ketoreductases (KREDs). Based on protein crystal structure, we engineered KREDs via a semi-rational mutagenesis strategy to improve reaction outcomes with a small and high-quality variants library. Mechanistic investigations combining wet experiments, crystallographic studies and computational simulations demonstrate that the repurposed biocatalyst can suppress racemic background reaction and unselected side reactions, yielding enantioselectivity that is challenging to achieve by chemocatalysis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Repurposing NADPH-dependent KREDs for an abiotic radical reaction.
Fig. 2: Reaction development.
Fig. 3: Substrate scope of NADPH-dependent KREDs enables abiotic photocatalysis.
Fig. 4: Mechanistic studies.

Data availability

Data relating to the materials and methods, experimental procedures, mechanistic studies and computational calculations, HPLC spectra and NMR spectra are available in the Supplementary Information. The atomic coordinates of the optimized computational models are available in the Supplementary Data. The configurations of molecular dynamics simulations have been deposited in GitHub ( The atomic coordinates of apo-P2-D12, apo-K3, P2-D12-2a, K3-2a and K3-NHPI have been deposited in the Protein Data Bank ( under accession code 7VDO, 7VE7, 7EJJ, 7EJI and 7EJH, respectively. All other data are available from the authors upon reasonable request.


  1. Devine, P. N. et al. Extending the application of biocatalysis to meet the challenges of drug development. Nat. Rev. Chem. 2, 409–421 (2018).

    Article  Google Scholar 

  2. Hollmann, F. & Fernandez‐Lafuente, R. Grand challenges in biocatalysis. Front. Catal. 1 (2021).

  3. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    Article  CAS  Google Scholar 

  4. Schmermund, L. et al. Photo-biocatalysis: biotransformations in the presence of light. ACS Catal. 9, 4115–4144 (2019).

    Article  CAS  Google Scholar 

  5. Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Biegasiewicz, K. F., Cooper, S. J., Emmanuel, M. A., Miller, D. C. & Hyster, T. K. Catalytic promiscuity enabled by photoredox catalysis in nicotinamide-dependent oxidoreductases. Nat. Chem. 10, 770–775 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Litman, Z. C., Wang, Y., Zhao, H. & Hartwig, J. F. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature 560, 355–359 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Xu, J. et al. Light-driven kinetic resolution of α-functionalized carboxylic acids enabled by an engineered fatty acid photodecarboxylase. Angew. Chem. Int. Ed. Engl. 58, 8474–8478 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Black, M. J. et al. Asymmetric redox-neutral radical cyclization catalysed by flavindependent ‘ene’-reductases. Nat. Chem. 12, 71–75 (2020).

    Article  PubMed  CAS  Google Scholar 

  11. Clayman, P. D. & Hyster, T. K. Photoenzymatic generation of unstabilized alkyl radicals: an asymmetric reductive cyclization. J. Am. Chem. Soc. 142, 15673–15677 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang, X. et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature 584, 69–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Page, C. G. et al. Quaternary charge-transfer complex enables photoenzymatic intermolecular hydroalkylation of olefins. J. Am. Chem. Soc. 143, 97–102 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Sellés Vidal, L., Kelly, C. L., Mordaka, P. M. & Heap, J. T. Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application. Biochim. Biophys. Acta Proteins Proteom. 1866, 327–347 (2018).

    Article  PubMed  CAS  Google Scholar 

  15. Zheng, C. & You, S.-L. Transfer hydrogenation with Hantzsch esters and related organic hydride donors. Chem. Soc. Rev. 41, 2498–2518 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, P.-Z., Chen, J.-R. & Xiao, W.-J. Hantzsch esters: an emerging versatile class of reagents in photoredox catalyzed organic synthesis. Org. Biomol. Chem. 17, 6936–6951 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Kanegusuku, A. L. G. & Roizen, J. L. Recent advances in photoredox-mediated radical conjugate addition reactions: an expanding toolkit for the Giese reaction. Angew. Chem. Int. Ed. Engl. 60, 21116–21149 (2021).

    Article  CAS  Google Scholar 

  18. Okada, K., Okamoto, K., Morita, N., Okubo, K. & Oda, M. Photosensitized decarboxylative michael addition through N-(acyloxy)phthalimides via an electron-transfer mechanism. J. Am. Chem. Soc. 113, 9401–9402 (1991).

    Article  CAS  Google Scholar 

  19. Zheng, C., Wang, G.-Z. & Shang, R. Catalyst-free decarboxylation and decarboxylative Giese additions of alkyl carboxylates through photoactivation of electron donor-acceptor complex. Adv. Synth. Catal. 361, 4500–4505 (2019).

    Article  CAS  Google Scholar 

  20. Chowdhury, R. et al. Decarboxylative alkyl coupling promoted by NADH and blue light. J. Am. Chem. Soc. 142, 20143–20151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Crisenza, G. E. M., Mazzarella, D. & Melchiorre, P. Synthetic methods driven by the photoactivity of electron donor–acceptor complexes. J. Am. Chem. Soc. 142, 5461–5476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, J., Li, Y., Xu, R. & Chen, Y. Donor–acceptor complex enables alkoxyl radical generation for metal-free C(sp3)–C(sp3) cleavage and allylation/alkenylation. Angew. Chem. Int. Ed. Engl. 56, 12619–12623 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, J. et al. Kinetically guided radical-based synthesis of C(sp3)-C(sp3) linkages on DNA. Proc. Natl Acad. Sci. USA 115, E6404–E6410 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prier, C. K. & Arnold, F. H. Chemomimetic biocatalysis: exploiting the synthetic potential of cofactor-dependent enzymes to create new catalysts. J. Am. Chem. Soc. 137, 13992–14006 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Huo, H., Harms, K. & Meggers, E. Catalytic, enantioselective addition of alkyl radicals to alkenes via visible-light-activated photoredox catalysis with a chiral rhodium complex. J. Am. Chem. Soc. 138, 6936–6939 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Sibi, M. P. & Sausker, J. B. The role of the achiral template in enantioselective transformations. Radical conjugate additions to α-methacrylates followed by hydrogen atom transfer. J. Am. Chem. Soc. 124, 984–991 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Sibi, M. P. & Patil, K. Enantioselective H-atom transfer reaction: a strategy to synthesize formaldehyde aldol products. Org. Lett. 7, 1453–1456 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Yin, Y. et al. Conjugate addition–enantioselective protonation of N-aryl glycines to αbranched 2-vinylazaarenes via cooperative photoredox and asymmetric catalysis. J. Am. Chem. Soc. 140, 6083–6087 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Dai, Z.-Y., Nong, Z.-S. & Wang, P.-S. Light-mediated asymmetric aliphatic C–H alkylation with hydrogen atom transfer catalyst and chiral phosphoric acid. ACS Catal. 10, 4786–4790 (2020).

    Article  CAS  Google Scholar 

  30. Rigotti, T. & Alemán, J. Visible light photocatalysis – from racemic to asymmetric activation strategies. Chem. Commun. 56, 11169–11190 (2020).

    Article  CAS  Google Scholar 

  31. Zhu, S. & Buchwald, S. L. Enantioselective CuH-catalyzed anti-Markovnikov hydroamination of 1,1-disubstituted alkenes. J. Am. Chem. Soc. 136, 15913–15916 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rudroff, F. et al. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 1, 12–22 (2018).

    Article  Google Scholar 

  33. Noey, E. L. et al. Origins of stereoselectivity in evolved ketoreductases. Proc. Natl Acad. Sci. USA 112, E7065–E7072 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, J. et al. Stereodivergent protein engineering of a lipase to access all possible stereoisomers of chiral esters with two stereocenters. J. Am. Chem. Soc. 141, 7934–7945 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bayly, C. I., Cieplak, P., Cornell, W. D. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).

    Article  CAS  Google Scholar 

  37. Case, D. A. et al. Amber (2018);

  38. Kuhne, T. D. et al. CP2K: An electronic structure and molecular dynamics software package - Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article  PubMed  CAS  Google Scholar 

  39. VandeVondele, J. et al. QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  40. Guidon, M., Hutter, J. & VandeVondele, J. Auxiliary density matrix methods for Hartree-Fock exchange calculations. J. Chem. Theory Comput. 6, 2348–2364 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ensing, B., Laio, A., Parrinello, M. & Klein, M. L. A recipe for the computation of the free energy barrier and the lowest free energy path of concerted reactions. J. Phys. Chem. B 109, 6676–6687 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Frisch, M. J. et al. Gaussian 16 Rev. A.03 (2016);

  44. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references


This work was supported by the US Department of Energy (no. DE-SC0018420 to H.Z.), the National Natural Science Foundation of China (no. 2073077 to B.W.) and the National Key Research and Development Program of China (no. 2019YFA09005000 to J.Z.). NMR data were collected at the Carl R. Woese Institute for Genomic Biology Core, on a 600-MHz NMR funded by NIH grant no. S10-RR028833 (to H.Z.). We thank Codexis, Inc. for kindly sharing the amino acid sequence information of KRED-P2-D12, the staff of beamlines BL17U1 and BL19U1 of the Shanghai Synchrotron Radiation Facility and the National Center for Protein Science Shanghai for access and help with X-ray data collection.

Author information

Authors and Affiliations



H.Z. coordinated the project. X.H. and H.Z. conceived the project and designed experiments. X.H. performed the majority of the experiments. J.F. and B.W. performed computational studies. J.C., X.Z. and J.Z. performed all structural biology studies. G.J. built the mutation library. W.H. contributed to scope investigation. X.H., B.W. and H.Z. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Binju Wang or Huimin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Chun-Jung Chen, Peng Tao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–47, Tables 1–16, discussions, HPLC spectra and NMR spectra.

Reporting Summary

Supplementary Data 1

Atomic coordinates of the optimized computational models.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Feng, J., Cui, J. et al. Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition. Nat Catal 5, 586–593 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing