Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering

Abstract

Upcycling of carbon dioxide (CO2) into value-added products represents a substantially untapped opportunity to tackle environmental issues and achieve a circular economy. Compared with easily available C1/C2 products, nevertheless, efficient and sustainable synthesis of energy-rich long-chain compounds from CO2 still remains a grand challenge. Here we describe a hybrid electro-biosystem, coupling spatially separate CO2 electrolysis with yeast fermentation, that efficiently converts CO2 to glucose with a high yield. We employ a nanostructured copper catalyst that can stably catalyse pure acetic acid production with a solid-electrolyte reactor. We then genetically engineer Saccharomyces cerevisiae to produce glucose in vitro from electro-generated acetic acid by deleting all defined hexokinase genes and overexpression of heterologous glucose-1-phosphatase. In addition, we showcase that the proposed platform can be easily extended to produce other products like fatty acids using CO2 as the carbon source. These results illuminate the tantalizing possibility of a renewable-electricity-driven manufacturing industry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the in vitro artificial sugar synthesis system.
Fig. 2: Electrocatalytic CO reduction to pure acetic acid using the GB-Cu catalyst.
Fig. 3: Engineering of S. cerevisiae strains.
Fig. 4: Glucose and free fatty acid generation via microbial fermentation.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Rode, A. et al. Estimating a social cost of carbon for global energy consumption. Nature 598, 308–314 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018).

    Article  CAS  Google Scholar 

  3. Grim, R. G. et al. Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy Environ. Sci. 13, 472–494 (2020).

    Article  CAS  Google Scholar 

  4. Zhang, B. & Sun, L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 48, 2216–2264 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Peng, C. et al. Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat. Commun. 12, 1580 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhu, Y. et al. Continuous artificial synthesis of glucose precursor using enzyme-immobilized microfluidic reactors. Nat. Commun. 10, 4049 (2019).

  7. De Carvalho, C. C. C. R. & José Caramujo, M. The various roles of fatty acids. Molecules 23, 2583 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  8. Berardi, S. et al. Molecular artificial photosynthesis. Chem. Soc. Rev. 43, 7501–7519 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Bonke, S. A., Wiechen, M., MacFarlane, D. R. & Spiccia, L. Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ. Sci. 8, 2791–2796 (2015).

    Article  CAS  Google Scholar 

  10. Chen, H., Dong, F. & Minteer, S. D. The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials. Nat. Catal. 3, 225–244 (2020).

    Article  Google Scholar 

  11. Liu, Y. et al. Biofuels for a sustainable future. Cell 184, 1636–1647 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Cherry, J. M. et al. Genetic and physical maps of Saccharomyces cerevisiae. Nature 387, 67–73 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, C. et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Su, Y. et al. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation. Joule 4, 800–811 (2020).

    Article  CAS  Google Scholar 

  15. Guo, J. et al. Light-driven fine chemical production in yeast biohybrids. Science 362, 813–816 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tremblay, P.-L. & Zhang, T. Electrifying microbes for the production of chemicals. Front. Microbiol. 6, 201 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Claassens, N. J., Cotton, C. A. R., Kopljar, D. & Bar-Even, A. Making quantitative sense of electromicrobial production. Nat. Catal. 2, 437–447 (2019).

    Article  CAS  Google Scholar 

  18. Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    Article  CAS  Google Scholar 

  19. Cai, T. et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science 373, 1523–1527 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Li, K., Peng, B. & Peng, T. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 6, 7485–7527 (2016).

    Article  CAS  Google Scholar 

  21. Novak, K., Kutscha, R. & Pflügl, S. Microbial upgrading of acetate into 2, 3-butanediol and acetoin by E. coli W. Biotechnol. Biofuels 13, 177 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, R. et al. An in vitro synthetic biosystem based on acetate for production of phloroglucinol. BMC Biotechnol. 17, 66 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Liu, Y. et al. Steering CO2 electroreduction toward ethanol production by a surface-bound Ru polypyridyl carbene catalyst on N-doped porous carbon. Proc. Natl Acad. Sci. USA 116, 26353–26358 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  24. Rong, W. et al. Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO2 electroreduction. Angew. Chem. Int. Ed. 60, 466–472 (2021).

    Article  CAS  Google Scholar 

  25. Saxena, A., Liyanage, W., Masud, J., Kapila, S. & Nath, M. Selective electroreduction of CO2 to carbon-rich products with a simple binary copper selenide electrocatalyst. J. Mater. Chem. A 9, 7150–7161 (2021).

    Article  CAS  Google Scholar 

  26. Wei, X. et al. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 10, 4103–4111 (2020).

    Article  CAS  Google Scholar 

  27. Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

    Article  CAS  Google Scholar 

  28. Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule 3, 240–256 (2019).

    Article  CAS  Google Scholar 

  29. Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018).

    Article  CAS  Google Scholar 

  30. Orella, M. J., Brown, S. M., Leonard, M. E., Román-Leshkov, Y. & Brushett, F. R. A general technoeconomic model for evaluating emerging electrolytic processes. Energy Technol. 8, 1900994 (2019).

    Article  Google Scholar 

  31. Wang, X. et al. Efficient upgrading of CO to C3 fuel using asymmetric CC coupling active sites. Nat. Commun. 10, 5186 (2019).

  32. Zheng, T. et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3, 265–278 (2019).

    Article  CAS  Google Scholar 

  33. Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Schouten, K., Kwon, Y., Van der Ham, C., Qin, Z. & Koper, M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902–1909 (2011).

    Article  CAS  Google Scholar 

  35. Bao, H. et al. Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products. Nat. Commun. 12, 238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    Article  CAS  Google Scholar 

  38. Zhu, P. et al. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proc. Natl Acad. Sci. USA 118, e2010868118 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Zhu, Q. et al. Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat. Commun. 10, 3851 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lum, Y., Cheng, T., Goddard, W. A. III & Ager, J. W. Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 140, 9337–9340 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Choi, C. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3, 804–812 (2020).

    Article  CAS  Google Scholar 

  42. Goodpaster, J. D., Bell, A. T. & Head-Gordon, M. Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 7, 1471–1477 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Montoya, J. H., Peterson, A. A. & Nørskov, J. K. Insights into C—C coupling in CO2 electroreduction on copper electrodes. ChemCatChem 5, 737–742 (2013).

    Article  CAS  Google Scholar 

  44. Ferreira, I., Pinho, O., Vieira, E. & Tavarela, J. Brewer’s Saccharomyces yeast biomass: characteristics and potential applications. Trends Food Sci. Tech. 21, 77–84 (2010).

    Article  CAS  Google Scholar 

  45. Sharif, M. et al. Single cell protein: sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture 531, 735885 (2021).

    Article  CAS  Google Scholar 

  46. Johnson, E. A. & Echavarri-Erasun, C. The Yeasts 21–44 (Elsevier, 2011).

  47. Eibl, R. et al. Cellular agriculture: opportunities and challenges. Annu. Rev. Food Sci. Technol. 12, 51–73 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Yu, T. et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell 174, 1549–1558 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Westfall, P. J. et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl Acad. Sci. USA 109, 111–118 (2012).

    Article  Google Scholar 

  50. Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Wilson, J. Hexokinases. Rev. Physiol. Biochem. Pharmacol. 126, 65–198 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Suleimanova, A. D. et al. Novel glucose-1-phosphatase with high phytase activity and unusual metal ion activation from soil bacterium Pantoea sp. strain 3.5.1. Appl. Environ. Microbiol. 81, 6790–6799 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pfeiffer, M., Wildberger, P. & Nidetzky, B. Yihx-encoded haloacid dehalogenase-like phosphatase HAD4 from Escherichia coli is a specific alpha-d-glucose 1-phosphate hydrolase useful for substrate-selective sugar phosphate transformations. J. Mol. Catal. B Enzym. 110, 39–46 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dimian, A. C. & Kiss, A. A. Novel energy efficient process for acetic acid production by methanol carbonylation. Chem. Eng. Res. Des. 159, 1–12 (2020).

    Article  CAS  Google Scholar 

  55. Wysocki, R. & Tamás, M. J. How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol. Rev. 34, 925–951 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    Article  CAS  Google Scholar 

  57. Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Zarkevich, N. A. & Johnson, D. D. Nudged-elastic band method with two climbing images: finding transition states in complex energy landscapes. J. Chem. Phys. 142, 024106 (2015).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

J. Zeng acknowledges the National Key Research and Development Program of China (2021YFA1500500, 2019YFA0405600), National Science Fund for Distinguished Young Scholars (21925204), National Natural Science Foundation of China (NSFC; U19A2015), the Dalian National Laboratory (DNL) Cooperation Fund, Chinese Academy of Science (CAS; DNL202003), K. C.Wong Education (GJTD-2020-15), Fundamental Research Funds for the Central Universities, Provincial Key Research and Development Program of Anhui (202004a05020074) and University of Science and Technology of China (USTC) Research Funds of the Double First-Class Initiative (YD2340002002). C.X. acknowledges the NSFC (22102018 and 52171201), the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province (no. 2021ZYD0043) and the University of Electronic Science and Technology of China for startup funding (A1098531023601264). T.Y. acknowledges the NSFC (32071416), the National Key Research and Development Program of China (2020YFA0907800 and 2021YFA0911000), the Shenzhen Institute of Synthetic Biology Scientific Research Program (grant no. JCHZ20200003) and Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines. T.Z. acknowledges the NSFC (22005291) and University of Electronic Science and Technology of China for startup funding (A1098531023601356). We thank beamline BL14W1 of Shanghai Synchrotron Radiation Facility for providing the beamtime. We also thank F. Jin for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceptualized and supervised by J. Zeng, T.Y. and C.X.; T.Z. and M.Z. prepared the catalysts and performed the catalytic tests. L.W., X. Liu and S.G. performed the yeast fermentation. T.Z., M.Z., W.X. and J.L. performed the catalyst characterizations. J. Zhao carried out density functional theory calculations. X. Li, C.L. and Q.J. performed the X-ray absorption fine structure measurements. J.B. helped in the analysis of data. T.Z., C.X., T.Y. and J. Zeng wrote the paper with input from all authors. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jie Zeng, Tao Yu or Chuan Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jens Nielsen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24 and Tables 1–9.

Source data

Source Data Fig. 2

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, T., Zhang, M., Wu, L. et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat Catal 5, 388–396 (2022). https://doi.org/10.1038/s41929-022-00775-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00775-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing