Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles

Abstract

The size of supported metal species is known to have a profound influence on their catalytic activity. However, this structure sensitivity remains ambiguous for metals at the atomic scale due to the lack of single-atom sensitive and statistically significant quantification methods. Here we overcome this difficulty to quantify the catalytic contribution of various surface palladium species, ranging from single atoms to sub-nanometre clusters and nanoparticles, in the dehydrogenation of dodecahydro-N-ethylcarbazole, a reaction of importance for H2 transportation and utilization. We show that the optimal site is a fully exposed palladium cluster with an average Pd–Pd coordination number of 4.4, favouring both the activation of reactants and desorption of products, whereas palladium single atoms are almost inactive. Our study highlights that for certain catalytic reactions, the construction of fully exposed metal clusters without the presence of spectators (that is, palladium single atoms in this work) could help to maximize the reactivity and the atomic efficiency of noble metals.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic of the process.
Fig. 2: Structures of different Pd/ND catalysts.
Fig. 3: Coordination and electronic properties of different Pd/ND catalysts.
Fig. 4: The dehydrogenation performance of different palladium catalysts/sites.
Fig. 5: DFT calculations of the palladium-catalysed DNEC dehydrogenation process.

Data availability

All data of this study are available from the corresponding authors upon reasonable request; source data are provided with this paper. Atomic coordinates of the computational studies are provided as Supplementary Data 1 with this paper. Source data are provided with this paper.

References

  1. Teichmann, D., Arlt, W., Wasserscheid, P. & Freymann, R. A future energy supply based on liquid organic hydrogen carriers (LOHC). Energy Environ. Sci. 4, 2767–2773 (2011).

    CAS  Article  Google Scholar 

  2. Sievi, G. et al. Towards an efficient liquid organic hydrogen carrier fuel cell concept. Energy Environ. Sci. 12, 2305–2314 (2019).

    CAS  Article  Google Scholar 

  3. Zou, Y.-Q., von Wolff, N., Anaby, A., Xie, Y. & Milstein, D. Ethylene glycol as an efficient and reversible liquid-organic hydrogen carrier. Nat. Catal. 2, 415–422 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Zhu, Q.-L. & Xu, Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci. 8, 478–512 (2015).

    CAS  Article  Google Scholar 

  5. Yang, M., Dong, Y., Fei, S., Ke, H. & Cheng, H. A comparative study of catalytic dehydrogenation of perhydro-N-ethylcarbazole over noble metal catalysts. Int. J. Hydrog. Energy 39, 18976–18983 (2014).

    CAS  Article  Google Scholar 

  6. Forberg, D. et al. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia. Nat. Commun. 7, 13201 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Wang, B. et al. Facet-dependent catalytic activities of Pd/rGO: exploring dehydrogenation mechanism of dodecahydro-N-ethylcarbazole. Appl. Catal. B 266, 118658 (2020).

    CAS  Article  Google Scholar 

  8. Sotoodeh, F. & Smith, K. J. Structure sensitivity of dodecahydro-N-ethylcarbazole dehydrogenation over Pd catalysts. J. Catal. 279, 36–47 (2011).

    CAS  Article  Google Scholar 

  9. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    CAS  PubMed  Article  Google Scholar 

  10. Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80 (2017).

    CAS  PubMed  Article  Google Scholar 

  11. Huang, F. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. JACS 140, 13142–13146 (2018).

    CAS  Article  Google Scholar 

  12. Lin, L. et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 14, 354–361 (2019).

    CAS  PubMed  Article  Google Scholar 

  13. Yao, S. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357, 389–393 (2017).

    CAS  PubMed  Article  Google Scholar 

  14. Jeong, H. et al. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 140, 9558–9565 (2018).

    CAS  PubMed  Article  Google Scholar 

  15. Jeong, H. et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 3, 368–375 (2020).

    CAS  Article  Google Scholar 

  16. Dong, C. et al. Supported metal clusters: fabrication and application in heterogeneous catalysis. ACS Catal. 10, 11011–11045 (2020).

    CAS  Article  Google Scholar 

  17. Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

    CAS  PubMed  Article  Google Scholar 

  18. Sotoodeh, F. & Smith, K. J. Analysis of H2 release from organic polycyclics over Pd catalysts using DFT. J. Phys. Chem. C. 117, 194–204 (2013).

    CAS  Article  Google Scholar 

  19. Duan, X. et al. sp2/sp3 framework from diamond nanocrystals: a key bridge of carbonaceous structure to carbocatalysis. ACS Catal. 9, 7494–7519 (2019).

    CAS  Article  Google Scholar 

  20. Jin, R. et al. Low temperature oxidation of ethane to oxygenates by oxygen over iridium–cluster catalysts. J. Am. Chem. Soc. 141, 18921–18925 (2019).

    CAS  PubMed  Article  Google Scholar 

  21. Liu, J. et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew. Chem. 58, 1163–1167 (2019).

    CAS  Article  Google Scholar 

  22. Yan, H. et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 137, 10484–10487 (2015).

    CAS  PubMed  Article  Google Scholar 

  23. Benson, J. E., Hwang, H. S. & Boudart, M. Hydrogen–oxygen titration method for the measurement of supported palladium surface areas. J. Catal. 30, 146–153 (1973).

    CAS  Article  Google Scholar 

  24. Xu, H. et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 11, 3908 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Kuo, C.-T. et al. 18.1% single palladium atom catalysts on mesoporous covalent organic framework for gas phase hydrogenation of ethylene. Cell Rep. Phys. Sci. 2, 100495 (2021).

    CAS  Article  Google Scholar 

  26. Asokan, C., Thang, H. V., Pacchioni, G. & Christopher, P. Reductant composition influences the coordination of atomically dispersed Rh on anatase TiO2. Catal. Sci. Technol. 10, 1597–1601 (2020).

    CAS  Article  Google Scholar 

  27. Lear, T. et al. The application of infrared spectroscopy to probe the surface morphology of alumina-supported palladium catalysts. J. Chem. Phys. 123, 174706 (2005).

    PubMed  Article  CAS  Google Scholar 

  28. Soma-Noto, Y. & Sachtler, W. M. H. Infrared spectra of carbon monoxide adsorbed on supported palladium and palladium–silver alloys. J. Catal. 32, 315–324 (1974).

    CAS  Article  Google Scholar 

  29. Matsubu, J. C., Yang, V. N. & Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 137, 3076–3084 (2015).

    CAS  PubMed  Article  Google Scholar 

  30. Resasco, J. et al. Relationship between atomic scale structure and reactivity of Pt catalysts: hydrodeoxygenation of m-cresol over isolated Pt cations and clusters. ACS Catal. 10, 595–603 (2019).

    Article  CAS  Google Scholar 

  31. Palazov, A., Chang, C. C. & Kokes, R. J. The infrared spectrum of carbon monoxide on reduced and oxidized palladium. J. Catal. 36, 338–350 (1975).

    CAS  Article  Google Scholar 

  32. Vannice, M. A. & Wang, S. Y. Determination of IR extinction coefficients for linear- and bridged-bonded carbon monoxide on supported palladium. J. Phys. Chem. 85, 2543–2546 (1981).

    CAS  Article  Google Scholar 

  33. Wu, D. et al. Surface molecular imprinting over supported metal catalysts for size-dependent selective hydrogenation reactions. Nat. Catal. 4, 595–606 (2021).

    CAS  Article  Google Scholar 

  34. Sobota, M. et al. Dehydrogenation of dodecahydro-N-ethylcarbazole on Pd/Al2O3 model catalysts. Chem. Eur. J. 17, 11542–11552 (2011).

    CAS  PubMed  Article  Google Scholar 

  35. Amende, M. et al. Dehydrogenation mechanism of liquid organic hydrogen carriers: dodecahydro-N-ethylcarbazole on Pd(111). Chem. Eur. J. 19, 10854–10865 (2013).

    CAS  PubMed  Article  Google Scholar 

  36. Amende, M. et al. Model catalytic studies of liquid organic hydrogen carriers: dehydrogenation and decomposition mechanisms of dodecahydro-N-ethylcarbazole on Pt(111). ACS Catal. 4, 657–665 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Sachtler, W. M. H. in Handbook of Heterogeneous Catalysis, Vol. 1 (eds Ertl, G., Knözinger, H., Schüth, F. & Weitkamp, J.) 1585–1593 (Wiley‐VCH, 2008).

  38. Sotoodeh, F., Zhao, L. & Smith, K. J. Kinetics of H2 recovery from dodecahydro-N-ethylcarbazole over a supported Pd catalyst. Appl. Catal. A 362, 155–162 (2009).

    CAS  Article  Google Scholar 

  39. Jiang, Z., Guo, S. & Fang, T. Enhancing the catalytic activity and selectivity of PdAu/SiO2 bimetallic catalysts for dodecahydro-N-ethylcarbazole dehydrogenation by controlling the particle size and dispersion. ACS Appl. Energy Mater. 2, 7233–7243 (2019).

    CAS  Article  Google Scholar 

  40. Jiang, Z., Gong, X., Guo, S., Bai, Y. & Fang, T. Engineering PdCu and PdNi bimetallic catalysts with adjustable alloying degree for the dehydrogenation reaction of dodecahydro-N-ethylcarbazole. Int. J. Hydrog. Energy 46, 2376–2389 (2021).

    CAS  Article  Google Scholar 

  41. Kiermaier, S., Lehmann, D., Bösmann, A. & Wasserscheid, P. Dehydrogenation of perhydro-N-ethylcarbazole under reduced total pressure. Int. J. Hydrog. Energy 46, 15660–15670 (2021).

    CAS  Article  Google Scholar 

  42. Li, S. et al. Atomically dispersed Ir/α-MoC catalyst with high metal loading and thermal stability for water-promoted hydrogenation reaction. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwab1026 (2021).

  43. Zhang, X. et al. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature 589, 396–401 (2021).

    CAS  PubMed  Article  Google Scholar 

  44. Peng, M. et al. Fully exposed cluster catalyst (FECC): toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 7, 262–273 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. Li, J. et al. Size-dependent catalytic activity over carbon-supported palladium nanoparticles in dehydrogenation of formic acid. J. Catal. 352, 371–381 (2017).

    CAS  Article  Google Scholar 

  46. Boudart, M. & Hwang, H. S. Solubility of hydrogen in small particles of palladium. J. Catal. 39, 44–52 (1975).

    CAS  Article  Google Scholar 

  47. Tew, M. W., Miller, J. T. & van Bokhoven, J. A. Particle size effect of hydride formation and surface hydrogen adsorption of nanosized palladium catalysts: L3 edge vs K edge X-ray absorption spectroscopy. J. Phys. Chem. C. 113, 15140–15147 (2009).

    CAS  Article  Google Scholar 

  48. Resasco, J., Dai, S., Graham, G., Pan, X. & Christopher, P. Combining in-situ transmission electron microscopy and infrared spectroscopy for understanding dynamic and atomic-scale features of supported metal catalysts. J. Phys. Chem. C. 122, 25143–25157 (2018).

    CAS  Article  Google Scholar 

  49. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Article  Google Scholar 

  50. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    CAS  Article  Google Scholar 

  51. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  52. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  53. Blöchl, P. E., Jepsen, O. & Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223–16233 (1994).

    Article  Google Scholar 

  54. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  Article  Google Scholar 

  56. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  57. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  58. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

  59. Sanville, E., Kenny, S. D., Smith, R. & Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 28, 899–908 (2007).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work received financial support from the Natural Science Foundation of China (21725301, 21932002, 22005007, 21821004), the National Key R&D Program of China (2021YFA1501100) and the Beijing Outstanding Young Scientist Program (BJJWZYJH01201914430039). C.D. acknowledges the China Postdoctoral Science Foundation (2018M640016). H.L. acknowledges the Liaoning Revitalization Talents Program (XLYC1907055). The X-ray absorption spectroscopy was conducted at the Shanghai Synchrotron Radiation Facility and the Beijing Synchrotron Radiation Facility. D.M. acknowledges support from the Tencent Foundation through the XPLORER PRIZE. Y.L. and Y.-G.W. were financially supported by the Natural Science Foundation of China (numbers 22022504, 22033005), the Guangdong ‘Pearl River’ Talent Plan (number 2019QN01L353), the Higher Education Innovation Strong School Project of Guangdong Province of China (number 2020KTSCX122) and the Guangdong Provincial Key Laboratory of Catalysis (number 2020B121201002). The computational resource is supported by the Center for Computational Science and Engineering at SUSTech and the CHEM high-performance supercomputer cluster (CHEM-HPC) located at the Department of Chemistry, SUSTech.

Author information

Authors and Affiliations

Authors

Contributions

D.M. conceived the project. D.M., Y.-G.W. and H.L. supervised the study. C.D., Z.G. and C.L. performed most of the reactions. F.H. and X.W. helped with the preparation of the catalysts. Y.L. and Y.-G.W. did the DFT calculations. M.P., Y.D., Y.X. and X.Q. performed the X-ray related characterizations (XAS, XPS) and analysis. M.W. and M.X. gave advice about the chemisorption and DRIFT analysis. Z.G. and W.Z. performed the electron microscopy study. C.D. and D.M. wrote the paper. All authors contributed to the discussion and revision of the paper.

Corresponding authors

Correspondence to Yang-Gang Wang, Hongyang Liu, Wu Zhou or Ding Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Rhett Kempe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–22, Tables 1–7, Notes 1–6 and references

Supplementary Data 1

Electronic structure calculations.

Source data

Source Data Fig. 1

Graphical illustration.

Source Data Fig. 2

STEM images and DRIFT spectra.

Source Data Fig. 3

EXAFS and XPS spectra.

Source Data Fig. 4

Catalytic performance.

Source Data Fig. 5

Energy profiles.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, C., Gao, Z., Li, Y. et al. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nat Catal 5, 485–493 (2022). https://doi.org/10.1038/s41929-022-00769-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00769-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing