Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor

Abstract

The practical implementation of electrochemical CO2 reduction technology is greatly challenged by notable CO2 crossover to the anode side, where the crossed-over CO2 is mixed with O2, via interfacial carbonate formation in traditional CO2 electrolysers. Here we report a porous solid electrolyte reactor strategy to efficiently recover these carbon losses. By creating a permeable and ion-conducting sulfonated polymer electrolyte between cathode and anode as a buffer layer, the crossover carbonate can combine with protons generated from the anode to re-form CO2 gas for reuse without mixing with anodic O2. Using a silver nanowire catalyst for CO2 reduction to CO, we demonstrated up to 90% recovery of the crossover CO2 in an ultrahigh gas purity form (>99%), while delivering over 90% CO Faradaic efficiency under a 200 mA cm2 current. A high continuous CO2 conversion efficiency of over 90% was achieved by recycling the recovered CO2 to the CO2 input stream.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic of CO2 crossover phenomenon in anionic MEA cells.
Fig. 2: Substantial carbon loss in traditional CO2 MEA electrolysers.
Fig. 3: PSE reactor design for crossover CO2 recovery and its gas analysis system.
Fig. 4: Crossover CO2 recovery characterization in an Ag NW solid electrolyte reactor.
Fig. 5: The wide applicability of crossover CO2 recovery using PSE reactor.
Fig. 6: DI water recycling and stability test for continuous CO2 gas recovery.
Fig. 7: Improved CO2 conversion via recycling crossover CO2.

Data availability

Source data for the stability test shown in Fig. 6c are provided with this paper. All other data supporting this work are available from the corresponding author upon reasonable request.

References

  1. Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018).

    Article  CAS  Google Scholar 

  2. Aresta, M., Dibenedetto, A. & Angelini, A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. Chem. Rev. 114, 1709–1742 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Centi, G., Quadrelli, E. A. & Perathoner, S. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energ. Environ. Sci. 6, 1711–1731 (2013).

    Article  CAS  Google Scholar 

  4. Olah, G. A., Prakash, G. K. S. & Goeppert, A. Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 133, 12881–12898 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, X. Y. et al. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Rosen, J. et al. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal. 5, 4293–4299 (2015).

    Article  CAS  Google Scholar 

  8. Kortlever, R., Shen, J., Schouten, K. J., Calle-Vallejo, F. & Koper, M. T. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Higgins, D., Hahn, C., Xiang, C. X., Jaramillo, T. F. & Weber, A. Z. Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm. ACS Energy Lett. 4, 317–324 (2019).

    Article  CAS  Google Scholar 

  10. Ren, S. X. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Yan, Z. F., Hitt, J. L., Zeng, Z. C., Hickner, M. A. & Mallouk, T. E. Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer. Nat. Chem. 13, 33–40 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Gu, J., Hsu, C. S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe(3+) sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Delacourt, C., Ridgway, P. L., Kerr, J. B. & Newman, J. Design of an electrochemical cell making syngas (CO+H-2) from CO2 and H2O reduction at room temperature. J. Electrochem. Soc. 155, B42–B49 (2008).

    Article  CAS  Google Scholar 

  15. Phillips, K. R., Katayama, Y., Hwang, J. & Shao-Horn, Y. Sulfide-derived copper for electrochemical conversion of CO2 to formic acid. J. Phys. Chem. Lett. 9, 4407–4412 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Sen, S., Brown, S. M., Leonard, M. & Brushett, F. R. Electroreduction of carbon dioxide to formate at high current densities using tin and tin oxide gas diffusion electrodes. J. Appl. Electrochem. 49, 917–928 (2019).

    Article  CAS  Google Scholar 

  17. Ma, W. et al. Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat. Commun. 10, 892 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Ma, W. C. et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020).

    Article  CAS  Google Scholar 

  20. Dinh, C. T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Choi, C. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3, 804–812 (2020).

    Article  CAS  Google Scholar 

  22. Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Pang, Y. J. et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat. Catal. 2, 251–258 (2019).

    Article  CAS  Google Scholar 

  24. Dinh, C. T., de Arquer, F. P. G., Sinton, D. & Sargent, E. H. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 3, 2835–2840 (2018).

    Article  CAS  Google Scholar 

  25. Weng, L. C., Bell, A. T. & Weber, A. Z. Towards membrane-electrode assembly systems for CO2 reduction: a modeling study. Energy Environ. Sci. 12, 1950–1968 (2019).

    Article  CAS  Google Scholar 

  26. Kucernak, A., Bidault, F. & Smith, G. Membrane electrode assemblies based on porous silver electrodes for alkaline anion exchange membrane fuel cells. Electrochim. Acta 82, 284–290 (2012).

    Article  CAS  Google Scholar 

  27. Hori, Y., Ito, H., Okano, K., Nagasu, K. & Sato, S. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide. Electrochim. Acta 48, 2651–2657 (2003).

    Article  CAS  Google Scholar 

  28. Kim, C. et al. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 137, 13844–13850 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Wu, J. et al. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 9, 5364–5371 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Pan, Y. et al. Design of single-atom Co-N5 Catalytic Site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Cheng, W. H. et al. CO2 reduction to CO with 19% efficiency in a solar-driven gas diffusion electrode flow cell under outdoor solar illumination. ACS Energy Lett. 5, 470–476 (2020).

    Article  CAS  Google Scholar 

  32. Jeng, E. & Jiao, F. Investigation of CO2 single-pass conversion in a flow electrolyzer. React. Chem. Eng. 5, 1768–1775 (2020).

    Article  CAS  Google Scholar 

  33. Larrazabal, G. O. et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Lin, M., Han, L. H., Singh, M. R. & Xiang, C. X. An experimental- and simulation-based evaluation of the CO2 utilization efficiency of aqueous-based electrochemical CO2 reduction reactors with ion-selective membranes. Acs Appl Energ. Mater. 2, 5843–5850 (2019).

    Article  CAS  Google Scholar 

  35. Liu, Z. C., Yang, H. Z., Kutz, R. & Masel, R. I. CO2 electrolysis to CO and O-2 at high selectivity, stability and efficiency using sustainion membranes. J. Electrochem. Soc. 165, J3371–J3377 (2018).

    Article  CAS  Google Scholar 

  36. Ma, M., Kim, S., Chorkendorff, I. & Seger, B. Role of ion-selective membranes in the carbon balance for CO2 electroreduction via gas diffusion electrode reactor designs. Chem. Sci. 11, 8854–8861 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parrondo, J. et al. Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis. RSC Adv. 4, 9875–9879 (2014).

    Article  CAS  Google Scholar 

  38. Patru, A., Binninger, T., Pribyl, B. & Schmidt, T. J. Design principles of bipolar electrochemical Co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature. J. Electrochem. Soc. 166, F34–F43 (2019).

    Article  CAS  Google Scholar 

  39. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reinisch, D. et al. Various CO2-to-CO electrolyzer cell and operation mode designs to avoid CO2-crossover from cathode to anode. Z. Phys. Chem. 234, 1115–1131 (2020).

    Article  CAS  Google Scholar 

  41. Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C-2 products with high single-pass conversion. Joule 3, 240–256 (2019).

    Article  CAS  Google Scholar 

  42. Zhou, X. H. et al. Solar-driven reduction of 1 atm CO2 to formate at 10% energy-conversion efficiency by use of a TiO2-Protected III-V tandem photoanode in conjunction with a bipolar membrane and a Pd/C cathode electrocatalyst. ECS Trans. 77, 31–41 (2017).

    Article  CAS  Google Scholar 

  43. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. O’Brien, C. et al. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett. 6, 2952 (2021).

    Article  CAS  Google Scholar 

  45. Hatsukade, T., Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces. Phys. Chem. Chem. Phys. 16, 13814–13819 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Luan, C. H. et al. High-performance carbon dioxide electrocatalytic reduction by easily fabricated large-scale silver nanowire arrays. ACS Appl. Mater. Inter 10, 17950–17956 (2018).

    Article  CAS  Google Scholar 

  47. Zhao, S., Jin, R. X. & Jin, R. C. Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: From bulk metals to nanoparticles and atomically precise nanoclusters. ACS Energy Lett. 3, 452–462 (2018).

    Article  CAS  Google Scholar 

  48. Bandara, T. M. et al. Effect of the alkaline cation size on the conductivity in gel polymer electrolytes and their influence on photo electrochemical solar cells. Phys. Chem. Chem. Phys. 18, 10873–10881 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Endrodi, B. et al. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolyzers. Nat. Energy 6, 439–448 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, R. M. et al. Maximizing Ag utilization in high-rate CO2 electrochemical reduction with a coordination polymer-mediated gas diffusion electrode. ACS Energy Lett. 4, 2024–2031 (2019).

    Article  CAS  Google Scholar 

  51. Fan, L., Xia, C., Zhu, P., Lu, Y. Y. & Wang, H. T. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    Article  CAS  Google Scholar 

  54. Yang, H., Kaczur, J. J., Sajjad, S. D. & Masel, R. I. CO2 conversion to formic acid in a three compartment cell with sustainion (TM) membranes. ECS Trans. 77, 1425–1431 (2017).

    Article  CAS  Google Scholar 

  55. Zhu, P. et al. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. P Natl Acad. Sci. USA 118, e2010868118 (2021).

    Article  CAS  Google Scholar 

  56. Matin, N. S., Remias, J. E., Neathery, J. K. & Liu, K. L. Facile method for determination of amine speciation in CO2 capture solutions. Ind. Eng. Chem. Res. 51, 6613–6618 (2012).

    Article  CAS  Google Scholar 

  57. Pinho, C. The positive displacement method for calibration of gas flow meters. The influence of gas compressibility. Appl. Therm. Eng. 41, 111–115 (2012).

    Article  CAS  Google Scholar 

  58. Wiebe, R. & Gaddy, V. L. The solubility of carbon dioxide in water at various temperatures from 12 to 40 degrees and at pressures to 500 atmospheres—critical phenomena. J. Am. Chem. Soc. 62, 815–817 (1940).

    Article  CAS  Google Scholar 

  59. Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energ. Environ. Sci. 11, 893–903 (2018).

    Article  CAS  Google Scholar 

  60. Zhao, C. et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 139, 8078–8081 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Yang, H. B. et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    Article  CAS  Google Scholar 

  62. Zheng, T. T. et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3, 265–278 (2019).

    Article  CAS  Google Scholar 

  63. Jiang, K. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem. 3, 950–960 (2017).

    Article  CAS  Google Scholar 

  64. Gong, Q. F. et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10, 2807 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kim, D., Kley, C. S., Li, Y. F. & Yang, P. D. Copper nanoparticle ensembles for selective electroreduction of CO2 to C-2-C-3 products. Proc. Natl Acad. Sci. USA 114, 10560–10565 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Loiudice, A. et al. Tailoring copper nanocrystals towards C-2 products in electrochemical CO2 reduction. Angew. Chem. Int Ed. 55, 5789–5792 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from Rice University, the National Science Foundation grant no. 2029442, the Welch Foundation Research grant (C-2051-2020040), and the David and Lucile Packard Foundation (grant no. 2020-71371). This work was performed in part at the Shared Equipment Authority at Rice University. We acknowledge the use of aberration-corrected scanning transmission electron microscopy coupled with electron energy loss spectroscopy at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Contributions

H.W. supervised the project. J.Y.T.K., P.Z. and H.W. designed the research. J.Y.T.K. and P.Z. performed the research. F.-Y.C., Z.-Y.W. and D.A.C. contributed new reagents/analytic tools. J.Y.T.K., P.Z., F.-Y.C., Z.-Y.W., D.A.C. and H.W. analysed the data. J.Y.T.K., P.Z. and H.W. wrote the paper.

Corresponding author

Correspondence to Haotian Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Sarah Lamaison, Hongyan Liang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs 1−17, Note 1, Table 1 and References.

Supplementary Video 1

CO2 collection into a balloon during CO2RR in PSE reactor. 240× speed video of CO2 collection during CO2RR to CO using an Ag NW catalyst. The balloon inflation shows continuous recovery of CO2 gas during 90 min of CO2RR in a PSE reactor.

Source data

Source Data Fig. 6

Chronopotentiometry cell voltage data for long-term electrolysis test.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J.Y.‘., Zhu, P., Chen, FY. et al. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat Catal 5, 288–299 (2022). https://doi.org/10.1038/s41929-022-00763-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00763-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing