Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis

Abstract

Due to the high energy needed to break the N ≡ N bond (945 kJ mol−1), a key step in ammonia production is the activation of dinitrogen, which in industry requires the use of transition metal catalysts such as iron (Fe) or ruthenium (Ru), in combination with high temperatures and pressures. Here we demonstrate a transition-metal-free catalyst—potassium hydride-intercalated graphite (KH0.19C24)—that can activate dinitrogen at very moderate temperatures and pressures. The catalyst catalyses NH3 synthesis at atmospheric pressure and achieves NH3 productivity (µmolNH3 gcat−1 h−1) comparable to the classical noble metal catalyst Ru/MgO at temperatures of 250–400 °C and 1 MPa. Both experimental and computational calculation results demonstrate that nanoconfinement of potassium hydride between the graphene layers is crucial for the activation and conversion of dinitrogen. Hydride in the catalyst participates in the hydrogenation step to form NH3. This work shows the promise of light metal hydride materials in the catalysis of ammonia synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the preparation process of the KH0.19C24 catalyst and XRD patterns.
Fig. 2: NH3 synthesis catalysed by KH0.19C24.
Fig. 3: Electron microscopy analyses of the KH0.19C24 catalyst after ammonia synthesis.
Fig. 4: Characterization of the N2-treated KH0.19C24 catalyst.
Fig. 5: Kinetic analyses of ammonia synthesis on the KH0.19C24 catalyst.
Fig. 6: DFT calculations for potential ammonia synthesis mechanisms on KH-intercalated graphite.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and the Supplementary Information. Atomic coordinates of the optimized computational models are supplied as Supplementary Data 1. All raw data are available on reasonable request by contacting the corresponding authors. Source data are provided with this paper.

References

  1. Guo, J. P. & Chen, P. NH3 as an energy carrier. Chem 3, 709–712 (2017).

    Article  CAS  Google Scholar 

  2. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article  CAS  Google Scholar 

  3. Schlogl, R. Catalytic synthesis of ammonia a “never-ending story”? Angew. Chem. Int. Ed. Engl. 42, 2004–2008 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. Zeng, H. S., Inazu, K. & Aika, K. The working state of the barium promoter in ammonia synthesis over an active-carbon-supported ruthenium catalyst using barium nitrate as the promoter precursor. J. Catal. 211, 33–41 (2002).

    Article  CAS  Google Scholar 

  5. Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).

    Article  Google Scholar 

  6. Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, aar6611 (2018).

  7. Kitano, M. et al. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 6, 6731 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    Article  CAS  Google Scholar 

  9. Makepeace, J. W. et al. Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: recent progress. Int. J. Hydrog. Energy 44, 7746–7767 (2019).

    Article  CAS  Google Scholar 

  10. Kitano, M. et al. Self-organized ruthenium-barium core-shell nanoparticles on a mesoporous calcium amide matrix for efficient low-temperature ammonia synthesis. Angew. Chem. Int. Ed. Engl. 57, 2648–2652 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 4, 934–940 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Ogura, Y. et al. Efficient ammonia synthesis over a Ru/La0.5Ce0.5O1.75 catalyst pre-reduced at high temperature. Chem. Sci. 9, 2230–2237 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manabe, R. et al. Electrocatalytic synthesis of ammonia by surface proton hopping. Chem. Sci. 8, 5434–5439 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, P. K. et al. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 9, 64–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Chang, F. et al. Alkali and alkaline earth hydrides-driven N2 activation and transformation over Mn nitride catalyst. J. Am. Chem. Soc. 140, 14799–14806 (2018).

    Article  PubMed  CAS  Google Scholar 

  16. Wang, P. K. et al. The formation of surface lithium-iron ternary hydride and its function on catalytic ammonia synthesis at low temperatures. Angew. Chem. Int. Ed. Engl. 56, 8716–8720 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Kobayashi, Y. et al. Titanium-based hydrides as heterogeneous catalysts for ammonia synthesis. J. Am. Chem. Soc. 139, 18240–18246 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Tang, Y. et al. Metal-dependent support effects of oxyhydride-supported Ru, Fe, Co catalysts for ammonia synthesis. Adv. Energy Mater. 8, 1801772 (2018).

    Article  CAS  Google Scholar 

  19. Azofra, L. M. et al. Single-site molybdenum on solid support materials for catalytic hydrogenation of N2 into NH3. Angew. Chem. Int. Ed. Engl. 57, 15812–15816 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Bramwell, P. L. et al. A transition-metal-free hydrogenation catalyst: pore-confined sodium alanate for the hydrogenation of alkynes and alkenes. J. Catal. 344, 129–135 (2016).

    Article  CAS  Google Scholar 

  21. Enoki, T., Miyajima, S., Sano, M. & Inokuchi, H. Hydrogen alkali-metal graphite ternary intercalation compounds. J. Mater. Res. 5, 435–466 (1990).

    Article  CAS  Google Scholar 

  22. Morawski, A. W. Application of CoCl2-K graphite-intercalation compounds in catalysis. Synth. Met. 59, 249–252 (1993).

    Article  CAS  Google Scholar 

  23. Salamanca-Riba, L., Yeh, N. C., Dresselhaus, M. S., Endo, M. & Enoki, T. High-resolution transmission electron microscopy on KHx–GIC’s. J. Mater. Res. 1, 177–186 (1986).

    Article  CAS  Google Scholar 

  24. Ertl, G. & Thiele, N. XPS studies with ammonia synthesis catalysts. Appl. Surf. Sci. 3, 99–112 (1979).

    Article  CAS  Google Scholar 

  25. Gaol, W. B. et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat. Energy 3, 1067–1075 (2018).

    Article  CAS  Google Scholar 

  26. Rosowski, F. et al. Ruthenium catalysts for ammonia synthesis at high pressures: preparation, characterization, and power-law kinetics. Appl. Catal. A 151, 443–460 (1997).

    Article  CAS  Google Scholar 

  27. Urabe, K., Aika, K. & Ozaki, A. Activation of nitrogen by alkali metal-promoted transition-metal. 6. Hydrogen effect on isotopic equilibration of nitrogen and rate-determining step of ammonia-synthesis on potassium-promoted ruthenium catalysts. J. Catal. 42, 197–204 (1976).

    Article  CAS  Google Scholar 

  28. Hagen, S. et al. Ammonia synthesis with barium-promoted iron-cobalt alloys supported on carbon. J. Catal. 214, 327–335 (2003).

    Article  CAS  Google Scholar 

  29. Suryanto, B. H. R. et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019).

    Article  CAS  Google Scholar 

  30. Yan, X. et al. Nitrogen reduction to ammonia on atomic-scale active sites under mild conditions. Small Methods 3, 1800501 (2019).

    Article  CAS  Google Scholar 

  31. Zheng, J. et al. Efficient non-dissociative activation of dinitrogen to ammonia over lithium-promoted ruthenium nanoparticles at low pressure. Angew. Chem. Int. Ed. Engl. 58, 17335–17341 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, X. Y. et al. Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst. Nat. Commun. 11, 653 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pekala, R. W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221–3227 (1989).

    Article  CAS  Google Scholar 

  34. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    Article  CAS  Google Scholar 

  35. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  37. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  38. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  39. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  CAS  Google Scholar 

  41. Persson, K. LBNL Materials Project. https://materialsproject.org (2014).

  42. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  43. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Zanoni for N2 physisorption measurements, and Netherlands Organisation for Scientific Research (NWO)-Vici (no. 16.130.344) for overall funding of the project. P.N. and P.E.d.J. acknowledge support from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (ERC-2014-CoG, no. 648991). S.E. acknowledges funding from the initiative ‘Computational Sciences for Energy Research’ from Shell and NWO grant no. 15CSTT05. The computational part of this work was sponsored by NWO Exact and Natural Sciences for the use of supercomputer facilities. We thank P. Chen and J. Guo for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

P.E.d.J. and P.N. conceived and supervised the research. F.C. designed and performed experiments and data analysis. I.T. and S.E. performed DFT calculations and results analysis. J.W.d.R. constructed the set-up for catalytic activity tests. J.P.H. performed XPS analysis. J.D.M. was responsible for electron microscopy measurements. F.C., P.N. and P.E.d.J. wrote the paper, with I.T. and S.E. contributing the section on DFT calculations. All authors commented on the manuscript.

Corresponding authors

Correspondence to Peter Ngene or Petra E. de Jongh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28, Tables 1–6 and references.

Supplementary Data 1

Atomic coordinates of the optimized computational models.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, F., Tezsevin, I., de Rijk, J.W. et al. Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis. Nat Catal 5, 222–230 (2022). https://doi.org/10.1038/s41929-022-00754-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00754-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing