Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Molecular water oxidation catalysts based on first-row transition metal complexes

The discovery of robust and efficient water oxidation catalysts based on first-row transition metal complexes is still a challenge. Here, we describe the underlying chemistry related to the deactivation pathways of first-row transition metal complexes and put forward a series of principles and basic checks to enable the development of robust catalysts.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathways that lead to high oxidation state active species.
Fig. 2: Potential species distribution involved in an aqueous solution of a 1TMC.
Fig. 3: Energy diagram for water oxidation and the competing ligand oxidation.

References

  1. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al) (Cambridge Univ. Press, in the press).

  2. Boers, N. Nat. Clim. Change 11, 680–688 (2021).

    Article  Google Scholar 

  3. Steffen, W. et al. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    Article  CAS  Google Scholar 

  4. Global Energy Review 2021 (IEA, 2021); https://www.iea.org/reports/global-energy-review-2021

  5. Garrido-Barros, P., Gimbert-Suriñach, C., Matheu, R., Sala, X. & Llobet, A. Chem. Soc. Rev. 46, 6088–6098 (2017).

    Article  CAS  Google Scholar 

  6. Pelosin, P. et al. iScience 23, 101378 (2020).

    Article  CAS  Google Scholar 

  7. Matheu, R. et al. Nat. Rev. Chem. 3, 331–341 (2019).

    Article  CAS  Google Scholar 

  8. Romain, S., Vigara, L. & Llobet, A. Acc. Chem. Res. 42, 1944–1953 (2009).

    Article  CAS  Google Scholar 

  9. Gil-Sepulcre, M. et al. Angew. Chem. Int. Ed. 60, 18639–18644 (2021).

    Article  CAS  Google Scholar 

  10. Rapaport, I., Helm, L., Merbach, A. E., Bernhard, P. & Ludi, A. Inorg. Chem. 27, 873–879 (2002).

    Article  Google Scholar 

  11. Helm, L. & Merbach, A. E. Chem. Rev. 105, 1923–1960 (2005).

    Article  CAS  Google Scholar 

  12. Hong, D. et al. Inorg. Chem. 52, 9522–9531 (2013).

    Article  CAS  Google Scholar 

  13. Draksharapu, A. et al. Inorg. Chem. 51, 900–913 (2011).

    Article  Google Scholar 

  14. Sander, A. C., Schober, A., Dechert, S. & Meyer, F. Eur. J. Inorg. Chem. 2015, 4348–4353 (2015).

    Article  CAS  Google Scholar 

  15. Neudeck, S. et al. J. Am. Chem. Soc. 136, 24–27 (2013).

    Article  Google Scholar 

  16. Blakemore, J. D. et al. J. Am. Chem. Soc. 132, 16017–16029 (2010).

    Article  CAS  Google Scholar 

  17. Sherman, B. D., Sheridan, M. V., Dares, C. J. & Meyer, T. J. Anal. Chem. 88, 7076–7082 (2016).

    Article  CAS  Google Scholar 

  18. Vereshchuk, N. et al. J. Am. Chem. Soc. 142, 5068–5077 (2020).

    Article  CAS  Google Scholar 

  19. Vereshchuk, N., Holub, J., Gil-Sepulcre, M., Benet-Buchholz, J. & Llobet, A. ACS Catal. 11, 5240–5247 (2021).

    Article  CAS  Google Scholar 

  20. Ghaderian, A., Holub, J., Benet-Buchholz, J., Llobet, A. & Gimbert-Suriñach, C. Inorg. Chem. 59, 4443–4452 (2020).

    Article  CAS  Google Scholar 

  21. Kanan, M. W. et al. J. Am. Chem. Soc. 132, 13692–13701 (2010).

    Article  CAS  Google Scholar 

  22. Sartorel, A. et al. J. Am. Chem. Soc. 130, 5006–5007 (2008).

    Article  CAS  Google Scholar 

  23. Schley, N. D. et al. J. Am. Chem. Soc. 133, 10473–10481 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Ministerio de Ciencia e Innovación, FEDER and AGAUR through grants, PID2019-111617RB-I00, SO-CEX2019-000925-S and 2017-SGR-1631 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Llobet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks James D. Blakemore and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil-Sepulcre, M., Llobet, A. Molecular water oxidation catalysts based on first-row transition metal complexes. Nat Catal 5, 79–82 (2022). https://doi.org/10.1038/s41929-022-00750-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00750-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing