Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Critical enzyme reactions in aromatic catabolism for microbial lignin conversion

Abstract

The application of microbes to valorize aromatic compounds derived from the abundant plant biopolymer lignin is a rapidly developing area of research that may ultimately enable viable conversion of this recalcitrant and heterogeneous resource to valuable bio-based chemical products. Starting from the three canonical lignin building blocks, which differ in the extent of aromatic ring methoxylation, several common classes of enzymatic reaction occur in the upper pathways of aromatic catabolism to prepare aromatic compounds for assimilation into central carbon metabolism, including aromatic O-demethylation, hydroxylation and decarboxylation. These critical enzymatic steps can often be rate-limiting for efficient biological funnelling of aromatic compounds. Here we review the known enzymatic mechanisms for these reactions that are relevant for aerobic aromatic catabolism of lignin-related monomers, highlighting opportunities at the intersection of biochemistry, enzyme engineering and metabolic engineering for applications in the expanding field of microbial lignin valorization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Activation of lignin-relevant compounds.
Fig. 2: Three strategies for aromatic O-demethylation.
Fig. 3: Strategies for aromatic hydroxylation.
Fig. 4: Reductive and oxidative strategies for aromatic decarboxylation.
Fig. 5: Forms and functions of flavin cofactors in the catabolism of LRCs.

Similar content being viewed by others

References

  1. Boerjan, W., Ralph, J. & Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. del Río, J. C. et al. Lignin monomers from beyond the canonical monolignol biosynthetic pathway: another brick in the wall. ACS Sustain. Chem. Eng. 8, 4997–5012 (2020). A review of recent findings that valuable aromatic compounds, such as flavonoids, hydroxystilbenes, and hydroxycinnamic amides, can act as genuine lignin monomers in some plant species, challenging the conventional view of lignin composition and assembly.

    Article  Google Scholar 

  3. Ralph, J. Hydroxycinnamates in lignification. Phytochem. Rev 9, 65–83 (2010).

    Article  CAS  Google Scholar 

  4. Davis, R. et al. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid Prehydrolysis and Enzymatic Hydrolysis Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons (NREL, 2013).

  5. Corona, A. et al. Life cycle assessment of adipic acid production from lignin. Green Chem. 20, 3857–3866 (2018).

    Article  CAS  Google Scholar 

  6. Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Ragauskas, A. J. et al. Lignin valorization: improving lignin processing in the biorefinery. Science 344, 1246843 (2014).

    Article  PubMed  Google Scholar 

  8. Rinaldi, R. et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. 55, 8164–8215 (2016).

    Article  CAS  Google Scholar 

  9. Schutyser, W. et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation and upgrading. Chem. Soc. Rev. 47, 852–908 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, Z., Fridrich, B. L., de Santi, A., Elangovan, S. & Barta, K. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Linger, J. G. et al. Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl Acad. Sci. USA 111, 12013–12018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bugg, T. D. H. & Rahmanpour, R. Enzymatic conversion of lignin into renewable chemicals. Curr. Opin. Chem. Biol. 29, 10–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachúa, D. & Vardon, D. R. Opportunities and challenges in biological lignin valorization. Curr. Opin. Biotechnol. 42, 40–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Abdelaziz, O. Y. et al. Biological valorization of low molecular weight lignin. Biotechnol. Adv. 34, 1318–1346 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Kamimura, N. et al. Bacterial catabolism of lignin‐derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism. Environ. Microbiol. Rep. 9, 679–705 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Eltis, L. D. & Singh, R. in Lignin Valorization: Emerging Approaches Vol. 19 (ed. Beckham, G. T.) 290–313 (The Royal Society of Chemistry, 2018).

  17. Seaton, S. C. & Neidle, E. L. in Lignin Valorization: Emerging Approaches Vol. 19 (ed. Beckham, G. T.) 252–289 (The Royal Society of Chemistry, 2018).

  18. Liu, Z.-H. et al. Identifying and creating pathways to improve biological lignin valorization. Renew. Sust. Energ. Rev. 105, 349–362 (2019).

    Article  CAS  Google Scholar 

  19. Becker, J. & Wittmann, C. A field of dreams: lignin valorization into chemicals, materials, fuels and health-care products. Biotechnol. Adv. 37, 107360 (2019). A comprehensive review of technological advances in lignin recovery, breakdown, and conversion, particularly by microbial cell factories, that are enabling the first sustainable value chains using lignin.

    Article  CAS  PubMed  Google Scholar 

  20. Vardon, D. R. et al. Adipic acid production from lignin. Energy Environ. Sci. 8, 617–628 (2015).

    Article  CAS  Google Scholar 

  21. Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds—from one strategy to four. Nat. Rev. Microbiol. 9, 803–816 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Bugg, T. D. Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59, 7075–7101 (2003).

    Article  CAS  Google Scholar 

  23. Vaillancourt, F. H., Bolin, J. T. & Eltis, L. D. The ins and outs of ring-cleaving dioxygenases. Crit. Rev. Biochem. Mol. 41, 241–267 (2006).

    Article  CAS  Google Scholar 

  24. Mycroft, Z., Gomis, M., Mines, P., Law, P. & Bugg, T. D. H. Biocatalytic conversion of lignin to aromatic dicarboxylic acids in Rhodococcus jostii RHA1 by re-routing aromatic degradation pathways. Green Chem. 17, 4974–4979 (2015).

    Article  CAS  Google Scholar 

  25. Becker, J., Kuhl, M., Kohlstedt, M., Starck, S. & Wittmann, C. Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Micro. Cell Fact. 17, 115 (2018).

    Article  Google Scholar 

  26. Higuchi, Y. et al. Discovery of novel enzyme genes involved in the conversion of an arylglycerol-β-aryl ether metabolite and their use in generating a metabolic pathway for lignin valorization. Metab. Eng. 55, 258–267 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Johnson, C. W. et al. Innovative chemicals and materials from bacterial aromatic catabolic pathways. Joule 3, 1523–1537 (2019). The production of 16 metabolites of bacterial aromatic catabolism and their use in producing materials with superior properties relative to petroleum-derived analogs.

    Article  CAS  Google Scholar 

  28. Li, X. et al. Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. Biotechnol. Biofuels 12, 60 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Perez, J. M. et al. Funneling aromatic products of chemically depolymerized lignin into 2-pyrone-4-6-dicarboxylic acid with Novosphingobium aromaticivorans. Green Chem. 21, 1340–1350 (2019). S-, G- and H-type lignin monomers are biologically funnelled to a single product, 2-pyrone-4,6-dicarboxyic acid, in Novosphingobium aromaticivorans DSM 12444.

    Article  CAS  Google Scholar 

  30. Suzuki, Y. et al. Development of the production of 2-pyrone-4,6-dicarboxylic acid from lignin extracts, which are industrially formed as by-products, as raw materials. J. Biosci. Bioeng. 130, 71–75 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Sonoki, T. et al. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds. J. Biotechnol. 192, 71–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Johnson, C. W. et al. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Metab. Eng. Commun. 3, 111–119 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Salvachúa, D. et al. Bioprocess development for muconic acid production from aromatic compounds and lignin. Green Chem. 20, 5007–5019 (2018).

    Article  Google Scholar 

  34. Kovaleva, E. G. & Lipscomb, J. D. Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. Nat. Chem. Biol. 4, 186–193 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mishina, Y. & He, C. Oxidative dealkylation DNA repair mediated by the mononuclear non-heme iron AlkB proteins. J. Inorg. Biochem. 100, 670–678 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Michalak, E. M., Burr, M. L., Bannister, A. J. & Dawson, M. A. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol. 20, 573–589 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Ferraro, D. J., Gakhar, L. & Ramaswamy, S. Rieske business: structure-function of Rieske non-heme oxygenases. Biochem. Biophys. Res. Commun. 338, 175–190 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Kweon, O. et al. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC Biochem. 9, 11 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hannemann, F., Bichet, A., Ewen, K. M. & Bernhardt, R. Cytochrome P450 systems—biological variations of electron transport chains. Biochim. Biophys. Acta 1770, 330–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Masai, E. et al. A novel tetrahydrofolate-dependent O-demethylase gene is essential for growth of Sphingomonas paucimobilis SYK-6 with syringate. J. Bacteriol. 186, 2757–2765 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abe, T., Masai, E., Miyauchi, K., Katayama, Y. & Fukuda, M. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6. J. Bacteriol. 187, 2030–2037 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jung, S. T., Lauchli, R. & Arnold, F. H. Cytochrome P450: taming a wild type enzyme. Curr. Opin. Biotechnol. 22, 809–817 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McIntosh, J. A., Farwell, C. C. & Arnold, F. H. Expanding P450 catalytic reaction space through evolution and engineering. Curr. Opin. Biotechnol. 19, 126–134 (2014).

    CAS  Google Scholar 

  44. Nikel, P. I. & de Lorenzo, V. Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab. Eng. 50, 142–155 (2018). A detailed review of key metabolic pathways in Pseudomonas putida and analysis of the potential to leverage both native biochemistry and trans-metabolism for conversion of alternative feedstocks to valuable products in this chassis.

    Article  CAS  PubMed  Google Scholar 

  45. Brunel, F. & Davison, J. Cloning and sequencing of Pseudomonas genes encoding vanillate demethylase. J. Bacteriol. 170, 4924–4930 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Buswell, J. A. & Ribbons, D. W. Vanillate O-demethylase from Pseudomonas species. Method. Enzymol. 161, 294–301 (1988).

    Article  CAS  Google Scholar 

  47. Notonier, S. et al. Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid. Metab. Eng. 65, 111–122 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Hibi, M., Sonoki, T. & Mori, H. Functional coupling between vanillate-O-demethylase and formaldehyde detoxification pathway. FEMS Microbiol. Lett. 253, 237–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Lanfranchi, E., Trajković, M., Barta, K., de Vries, J. G. & Janssen, D. B. Exploring the selective demethylation of aryl methyl ethers with a Pseudomonas Rieske monooxygenase. ChemBioChem 20, 118–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Lamb, D. C., Waterman, M. R., Kelly, S. L. & Guengerich, F. P. Cytochromes P450 and drug discovery. Curr. Opin. Biotechnol. 18, 504–512 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Li, S., Du, L. & Bernhardt, R. Redox partners: function modulators of bacterial P450 enzymes. Trends Microbiol. 28, 445–454 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Correddu, D., Di Nardo, G. & Gilardi, G. Self-sufficient class VII cytochromes P450: from full-length structure to synthetic biology applications. Trends Biotechnol. 39, 1184–1207 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Guengerich, F. P. Rate-limiting steps in cytochrome P450 catalysis. Biol. Chem. 383, 1553–1564 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Eltis, L. D., Karlson, U. & Timmis, K. N. Purification and characterization of cytochrome P450RR1 from Rhodococcus rhodochrous. Eur. J. Biochem. 213, 211–216 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Karlson, U. et al. Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate. J. Bacteriol. 175, 1467–1474 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bell, S. G. et al. Cytochrome P450 enzymes from the metabolically diverse bacterium Rhodopseudomonas palustris. Biochem. Biophys. Res. Commun. 342, 191–196 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Bell, S. G. et al. Crystal structure of CYP199A2, a para-substituted benzoic acid oxidizing cytochrome P450 from Rhodopseudomonas palustris. J. Mol. Biol. 383, 561–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Tumen-Velasquez, M. et al. Accelerating pathway evolution by increasing the gene dosage of chromosomal segments. Proc. Natl Acad. Sci. USA 115, 7105–7110 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mallinson, S. J. B. et al. A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion. Nat. Commun. 9, 2487 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Machovina, M. M. et al. Enabling microbial syringol conversion through structure-guided protein engineering. Proc. Natl Acad. Sci. USA 116, 13970–13976 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ellis, E. S. et al. Engineering a cytochrome P450 for demethylation of lignin-derived aromatic aldehydes. JACS Au 1, 252–261 (2021). Structure-guided mutagenesis converts GcoA, a guaiacol O-demethylase, into an efficient catalyst toward aromatic aldehydes o- and p-vanillin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fetherolf, M. M. et al. Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin. Proc. Natl Acad. Sci. USA 117, 25771–25778 (2020). Cytochromes P450 from two Rhodococcus species catalyze the O-demethylation of lignin-derived.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nelson, D. R. Cytochrome P450 diversity in the tree of life. Biochim. Biophys. Acta 1866, 141–154 (2018).

    Article  CAS  Google Scholar 

  64. Kawahara, N. et al. Purification and characterization of 2-ethoxyphenol-induced cytochrome P450 from Corynebacterium sp. strain EP1. Can. J. Microbiol. 45, 833–839 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Sutherland, J. B. Demethylation of veratrole by cytochrome P-450 in Streptomyces setonii. Appl. Environ. Microbiol. 52, 98–100 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sauret-Ignazi, G., Dardas, A. & Pelmont, J. Purification and properties of cytochrome P-450 from Moraxella sp. Biochimie 70, 1385–1395 (1988).

    Article  CAS  PubMed  Google Scholar 

  67. García-Hidalgo, J., Ravi, K., Kuré, L.-L., Lidén, G. & Gorwa-Grauslund, M. Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation. AMB Express 9, 34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Klenk, J. M., Ertl, J., Rapp, L., Fischer, M.-P. & Hauer, B. Expression and characterization of the benzoic acid hydroxylase CYP199A25 from Arthrobacter sp. Mol. Catal. 484, 110739 (2020).

    Article  CAS  Google Scholar 

  69. Jiang, Y. et al. Regioselective aromatic O-demethylation with an artificial P450BM3 peroxygenase system. Catal. Sci. Technol. 10, 1219–1223 (2020).

    Article  CAS  Google Scholar 

  70. Zhang, Z., Wang, Y., Zheng, P. & Sun, J. Promoting lignin valorization by coping with toxic C1 byproducts. Trends Biotechnol. 39, 331–335 (2020).

    Article  PubMed  Google Scholar 

  71. Dev, I. K. & Harvey, R. J. Sources of one-carbon units in the folate pathway of Escherichia coli. J. Biol. Chem. 257, 1980–1986 (1982).

    Article  CAS  PubMed  Google Scholar 

  72. Sonoki, T. et al. Tetrahydrofolate-dependent vanillate and syringate O-demethylation links tightly to one-carbon metabolic pathway associated with amino acid synthesis and DNA methylation in the lignin metabolism of Sphingomonas paucimobilis SYK-6. J. Wood Sci. 48, 434–439 (2002).

    Article  CAS  Google Scholar 

  73. Harada, A. et al. The crystal structure of a new O-demethylase from Sphingobium sp. strain SYK-6. FEBS J. 284, 1855–1867 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Kohler, A. C., Mills, M. J. L., Adams, P. D., Simmons, B. A. & Sale, K. L. Structure of aryl O-demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism. Proc. Natl Acad. Sci. USA 114, E3205–E3214 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Perez, J. M. et al. Redundancy in aromatic O-demethylation and ring opening reactions in Novosphingobium aromaticivorans and their impact in the metabolism of plant derived phenolics. Appl. Environ. Microbiol. 87, e02794-20 (2021).

    Article  PubMed Central  Google Scholar 

  76. Berman, M. H. & Frazer, A. C. Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers. Appl. Environ. Microbiol. 58, 925–931 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kaufmann, F., Wohlfarth, G. & Diekert, G. Isolation of O-demethylase, an ether-cleaving enzyme system of the homoacetogenic strain MC. Arch. Microbiol. 168, 136–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Naidu, D. & Ragsdale, S. W. Characterization of a three-component vanillate O-demethylase from Moorella thermoacetica. J. Bacteriol. 183, 3276–3281 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Studenik, S., Vogel, M. & Diekert, G. Characterization of an O-demethylase of Desulfitobacterium hafniense DCB-2. J. Bacteriol. 194, 3317–3326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ralph, J., Lapierre, C. & Boerjan, W. Lignin structure and its engineering. Curr. Opin. Biotechnol. 56, 240–249 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Chenprakhon, P., Wongnate, T. & Chaiyen, P. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases. Prot. Sci. 28, 8–29 (2019). Provides a comprehensive review of FMO mechanisms and structures for aromatic hydroxylation.

    Article  CAS  Google Scholar 

  82. Peng, R.-H. et al. in Reviews of Environmental Contamination and Toxicology (ed. Whitacre, D. M.) 65–94 (Springer, 2010).

  83. Ingraham, L. L. & Meyer, D. L. in Biochemistry of Dioxygen Vol. 4 Biochemistry of the Elements 175–178 (Springer, 1985).

  84. Fitzpatrick, P. F. Mechanism of aromatic amino acid hydroxylation. Biochemistry 42, 14083–14091 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Lah, L. et al. The versatility of the fungal cytochrome P450 monooxygenase system is instrumental in xenobiotic detoxification. Mol. Microbiol. 81, 1374–1389 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Alber, A. & Ehlting, J. Cytochrome P450s in lignin biosynthesis. Adv. Bot. Res. 61, 113–143 (2012).

    Article  CAS  Google Scholar 

  87. Tinberg, C. E., Song, W. J., Izzo, V. & Lippard, S. J. Multiple roles of component proteins in bacterial multicomponent monooxygenases: phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas sp. OX1. Biochemistry 50, 1788–1798 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Balashova, N. V. et al. Purification and characterization of a salicylate hydroxylase involved in 1-hydroxy-2-naphthoic acid hydroxylation from the naphthalene and phenanthrene-degrading bacterial strain Pseudomonas putida BS202-P1. Biodegradation 12, 179–188 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Bosch, R., Moore, E. R., García-Valdés, E. & Pieper, D. H. NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. J. Bacteriol. 181, 2315–2322 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Furukawa, K., Suenaga, H. & Goto, M. Biphenyl dioxygenases: functional versatilities and directed evolution. J. Bacteriol. 186, 5189–5196 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Neidle, E. L. et al. Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. J. Bacteriol. 173, 5385–5395 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Entsch, B. & van Berkel, W. J. Structure and mechanism of para-hydroxybenzoate hydroxylase. FASEB J. 9, 476–483 (1995). Pioneering investigation of aromatic hydroxylation that is still the foundation of studies published today.

    Article  CAS  PubMed  Google Scholar 

  93. Eppink, M. H., Overkamp, K. M., Schreuder, H. A. & Van Berkel, W. J. Switch of coenzyme specificity of p-hydroxybenzoate hydroxylase. J. Mol. Biol. 292, 87–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Huang, Y., Zhao, K. X., Shen, X. H., Jiang, C. Y. & Liu, S. J. Genetic and biochemical characterization of a 4-hydroxybenzoate hydroxylase from Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 78, 75–83 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Kasai, D. et al. Uncovering the protocatechuate 2, 3-cleavage pathway genes. J. Bacteriol. 191, 6758–6768 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huijbers, M. M. E., Montersino, S., Westphal, A. H., Tischler, D. & van Berkel, W. J. H. Flavin dependent monooxygenases. Arch. Biochem. Biophys. 544, 2–17 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Chaiyen, P., Fraaije, M. W. & Mattevi, A. The enigmatic reaction of flavins with oxygen. Trends Biochem. Sci. 37, 373–380 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Ellis, H. R. The FMN-dependent two-component monooxygenase systems. Arch. Biochem. Biophys. 497, 1–12 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Sucharitakul, J., Chaiyen, P., Entsch, B. & Ballou, D. P. The reductase of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii requires p-hydroxyphenylacetate for effective catalysis. Biochemistry 44, 10434–10442 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Palfey, B. A. & McDonald, C. A. Control of catalysis in flavin-dependent monooxygenases. Arch. Biochem. Biophys. 493, 26–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Duffner, F. M., Kirchner, U., Bauer, M. P. & Müller, R. Phenol/cresol degradation by the thermophilic Bacillus thermoglucosidasius A7: cloning and sequence analysis of five genes involved in the pathway. Gene 256, 215–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Levy-Booth, D. J. et al. Catabolism of alkylphenols in Rhodococcus via a meta-cleavage pathway associated with genomic islands. Front. Microbiol. 10, 1862 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sucharitakul, J., Chaiyen, P., Entsch, B. & Ballou, D. P. Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii. J. Biol. Chem. 281, 17044–17053 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Hirayama, H. et al. Variation of the contents of biphenyl structures in lignins among wood species. Holzforschung 73, 569–578 (2019).

    Article  CAS  Google Scholar 

  105. Kumamaru, T., Suenaga, H., Mitsuoka, M., Watanabe, T. & Furukawa, K. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat. Biotechnol. 16, 663–666 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Rogers, M. S. & Lipscomb, J. D. Salicylate 5-hydroxylase: intermediates in aromatic hydroxylation by a Rieske monooxygenase. Biochemistry 58, 5305–5319 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Fang, T. & Zhou, N.-Y. Purification and characterization of salicylate 5-hydroxylase, a three-component monooxygenase from Ralstonia sp. strain U2. Appl. Microbiol. Biotechnol. 98, 671–679 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Parales, R. E. et al. Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. J. Bacteriol. 182, 1641–1649 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gally, C., Nestl, B. M. & Hauer, B. Engineering Rieske non-heme iron oxygenases for the asymmetric dihydroxylation of alkenes. Angew. Chem. Int. Ed. 54, 12952–12956 (2015).

    Article  CAS  Google Scholar 

  110. Ferraro, D. J., Okerlund, A., Brown, E. & Ramaswamy, S. One enzyme, many reactions: structural basis for the various reactions catalyzed by naphthalene 1,2-dioxygenase. IUCrJ 4, 648–656 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jouanneau, Y., Micoud, J. & Meyer, C. Purification and characterization of a three-component salicylate 1-hydroxylase from Sphingomonas sp. strain CHY-1. Appl. Environ. Microbiol. 73, 7515–7521 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. del Cerro, C. et al. Intracellular pathways for lignin catabolism in white-rot fungi. Proc. Natl Acad. Sci. USA 118, e2017381118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Seibert, C. M. & Raushel, F. M. Structural and catalytic diversity within the amidohydrolase superfamily. Biochemistry 44, 6383–6391 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Li, T., Huo, L., Pulley, C. & Liu, A. Decarboxylation mechanisms in biological system. Bioorg. Chem. 43, 2–14 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Goto, M. et al. Crystal structures of nonoxidative zinc-dependent 2,6-dihydroxybenzoate (gamma-resorcylate) decarboxylase from Rhizobium sp. strain MTP-10005. J. Biol. Chem. 281, 34365–34373 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Vladimirova, A. et al. Substrate distortion and the catalytic reaction mechanism of 5-carboxyvanillate decarboxylase. J. Am. Chem. Soc. 138, 826–836 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Sheng, X. et al. Mechanism and structure of gamma-resorcylate decarboxylase. Biochemistry 57, 3167–3175 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Sheng, X. et al. A combined experimental-theoretical study of the LigW-catalyzed decarboxylation of 5-carboxyvanillate in the metabolic pathway for lignin degradation. ACS Catal. 7, 4968–4974 (2017). The empirical determination of the identity of the CO2 as the reaction by product and density functional theory calculation that describes the molecular mechanism of the AHS-type decarboxylase.

    Article  CAS  Google Scholar 

  119. Peng, X. et al. A second 5-carboxyvanillate decarboxylase gene, ligW2, is important for lignin-related biphenyl catabolism in Sphingomonas paucimobilis SYK-6. Appl. Environ. Microbiol. 71, 5014–5021 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kasai, D. et al. γ-Resorcylate catabolic-pathway genes in the soil actinomycete Rhodococcus jostii RHA1. Appl. Environ. Microbiol. 81, 7656–7665 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Spence, E. M. et al. The hydroxyquinol degradation pathway in Rhodococcus jostii RHA1 and Agrobacterium species is an alternative pathway for degradation of protocatechuic acid and lignin fragments. Appl. Environ. Microbiol. 86, e01561–e01520 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Meier, A. K. et al. Agdc1p—a gallic acid decarboxylase involved in the degradation of tannic acid in the yeast Blastobotrys (Arxula) adeninivorans. Front. Microbiol. 8, 1777 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Brückner, C., Oreb, M., Kunze, G., Boles, E. & Tripp, J. An expanded enzyme toolbox for production of cis, cis-muconic acid and other shikimate pathway derivatives in Saccharomyces cerevisiae. FEMS Yeast Res. 18, foy017 (2018).

  124. Zeug, M. et al. Crystal structures of non-oxidative decarboxylases reveal a new mechanism of action with a catalytic dyad and structural twists. Sci. Rep. 11, 3056 (2021). A novel NTF2-type cofactorless gallate/protocatechuate decarboxylase from fungi.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. White, M. D. et al. UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis. Nature 522, 502–506 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lupa, B., Lyon, D., Gibbs, M. D., Reeves, R. A. & Wiegel, J. Distribution of genes encoding the microbial non-oxidative reversible hydroxyarylic acid decarboxylases/phenol carboxylases. Genomics 86, 342–351 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Lupa, B., Lyon, D., Shaw, L. N., Sieprawska-Lupa, M. & Wiegel, J. Properties of the reversible nonoxidative vanillate/4-hydroxybenzoate decarboxylase from Bacillus subtilis. Can. J. Microbiol. 54, 75–81 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Payne, K. A. et al. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature 522, 497–501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, P. H. et al. Biosynthesis and activity of prenylated FMN cofactors. Cell Chem. Biol. 25, 560–570 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Walsh, C. T. & Wencewicz, T. A. Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat. Prod. Rep. 30, 175–200 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Payer, S. E. et al. Regioselective para-carboxylation of catechols with a prenylated flavin dependent decarboxylase. Angew. Chem. Int. Ed. 56, 13893–13897 (2017). Structural and catalytic properties of the UbiD-type decarboxylase.

    Article  CAS  Google Scholar 

  132. Grant, D. J. & Patel, J. C. The non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes). Antonie Van Leeuwenhoek 35, 325–343 (1969).

    Article  CAS  PubMed  Google Scholar 

  133. Matsui, T., Yoshida, T., Hayashi, T. & Nagasawa, T. Purification, characterization, and gene cloning of 4-hydroxybenzoate decarboxylase of Enterobacter cloacae P240. Arch. Microbiol. 186, 21–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Holesova, Z. et al. Gentisate and 3-oxoadipate pathways in the yeast Candida parapsilosis: identification and functional analysis of the genes coding for 3-hydroxybenzoate 6-hydroxylase and 4-hydroxybenzoate 1-hydroxylase. Microbiology 157, 2152–2163 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Katagiri, M., Takemori, S., Suzuki, K. & Yasuda, H. Mechanism of the salicylate hydroxylase reaction. J. Biol. Chem. 241, 5675–5677 (1966).

    Article  CAS  PubMed  Google Scholar 

  136. Reiner, A. M. Metabolism of aromatic compounds in bacteria. Purification and properties of the catechol-forming enzyme, 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (NAD+) oxidoreductase (decarboxylating). J. Biol. Chem. 247, 4960–4965 (1972).

    Article  CAS  PubMed  Google Scholar 

  137. Neidle, E. et al. Cis-diol dehydrogenases encoded by the TOL pWW0 plasmid xylL gene and the Acinetobacter calcoaceticus chromosomal benD gene are members of the short-chain alcohol dehydrogenase superfamily. Eur. J. Biochem. 204, 113–120 (1992).

    Article  CAS  PubMed  Google Scholar 

  138. Reiner, A. M. Metabolism of benzoic acid by bacteria: 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid is an intermediate in the formation of catechol. J. Bacteriol. 108, 89–94 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cho, O. et al. Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation. Biochem. Biophys. Res. Commun. 327, 656–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Becker, J. & Wittmann, C. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials and health-care products. Angew. Chem. Int. Ed. 54, 3328–3350 (2015).

    Article  CAS  Google Scholar 

  141. Kuatsjah, E. et al. Debottlenecking 4-hydroxybenzoate hydroxylation in Pseudomonas putida KT2440 improves muconate productivity from p-coumarate. Metab. Eng. 70, 31–42 (2021).

  142. Zobel, S., Kuepper, J., Ebert, B., Wierckx, N. & Blank, L. M. Metabolic response of Pseudomonas putida to increased NADH regeneration rates. Eng. Life Sci. 17, 47–57 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Lubbers, R. J. M. et al. Discovery of novel p-hydroxybenzoate-m-hydroxylase, protocatechuate 3,4 ring-cleavage dioxygenase, and hydroxyquinol 1,2 ring-cleavage dioxygenase from the filamentous fungus Aspergillus niger. ACS Sustain. Chem. Eng. 7, 19081–19089 (2019).

    Article  CAS  Google Scholar 

  144. Wang, M., Chen, B., Fang, Y. & Tan, T. Cofactor engineering for more efficient production of chemicals and biofuels. Biotechnol. Adv. 35, 1032–1039 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Bell, S. G., Tan, A. B., Johnson, E. O. & Wong, L.-L. Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2. Mol. Biosyst. 6, 206–214 (2009).

    Article  PubMed  Google Scholar 

  146. Khatri, Y., Schifrin, A. & Bernhardt, R. Investigating the effect of available redox protein ratios for the conversion of a steroid by a myxobacterial CYP 260A1. FEBS Lett. 591, 1126–1140 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. To, P., Whitehead, B., Tarbox, H. E. & Fried, S. D. Nonrefoldability is pervasive across the E. coli proteome. J. Am. Chem. Soc. 143, 11435–11448 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Zhu, Z. et al. Development of engineered ferredoxin reductase systems for the efficient hydroxylation of steroidal substrates. ACS Sustain. Chem. Eng. 8, 16720–16730 (2020).

    Article  CAS  Google Scholar 

  149. Zhang, W. et al. New reactions and products resulting from alternative interactions between the p450 enzyme and redox partners. J. Am. Chem. Soc. 136, 3640–3646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chen, N. H., Djoko, K. Y., Veyrier, F. J. & McEwan, A. G. Formaldehyde stress responses in bacterial pathogens. Front. Microbiol. 7, 257 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Nguyen, L. T., Tran, M. H. & Lee, E. Y. Co-upgrading of ethanol-assisted depolymerized lignin: a new biological lignin valorization approach for the production of protocatechuic acid and polyhydroxyalkanoic acid. Bioresour. Technol. 338, 125563 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Sandberg, T. E., Salazar, M. J., Weng, L. L., Palsson, B. O. & Feist, A. M. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 56, 1–16 (2019). A comprehensive review of adaptive laboratory evolution principles, applications and potential to optimize relevant features of industrial microbial chassis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mohamed, E. T. et al. Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance. Metab. Eng. Commun. 11, e00143 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Salvachúa, D. et al. Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440. Proc. Natl Acad. Sci. USA 117, 9302–9310 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Alves, N. J. et al. Bacterial nanobioreactors—directing enzyme packaging into bacterial outer membrane vesicles. ACS Appl. Mater. Interfaces 7, 24963–24972 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Elmore, J. R. et al. Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion. Nat. Commun. 12, 2261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Foo, J. L., Ching, C. B., Chang, M. W. & Leong, S. S. J. The imminent role of protein engineering in synthetic biology. Biotechnol. Adv. 30, 541–549 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Maxel, S. et al. A growth-based, high-throughput selection platform enables remodeling of 4-hydroxybenzoate hydroxylase active site. ACS Catal. 10, 6969–6974 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jha, R. K. et al. A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution. Metab. Eng. Commun. 6, 33–38 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Wiechert, W. 13C metabolic flux analysis. Metab. Eng. 3, 195–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Vermaas, J. V. et al. Passive membrane transport of lignin-related compounds. Proc. Natl Acad. Sci. USA 116, 23117 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wada, A. et al. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics. Metab. Eng. 64, 167–179 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Conrado, R. J., Varner, J. D. & DeLisa, M. P. Engineering the spatial organization of metabolic enzymes: mimicking nature’s synergy. Curr. Opin. Biotechnol. 19, 492–499 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Lee, H., DeLoache, W. C. & Dueber, J. E. Spatial organization of enzymes for metabolic engineering. Metab. Eng. 14, 242–251 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Entsch, B., Cole, L. J. & Ballou, D. P. Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase. Arch. Biochem. Biophys. 433, 297–311 (2005). A summary of the p-hydroxybenzoate hydroxylase catalytic cycle.

    Article  CAS  PubMed  Google Scholar 

  166. van Berkel, W. J. H., Kamerbeek, N. M. & Fraaije, M. W. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J. Biotechnol. 124, 670–689 (2006).

    Article  PubMed  Google Scholar 

  167. Leys, D. Flavin metamorphosis: cofactor transformation through prenylation. Curr. Opin. Chem. Biol. 47, 117–125 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank many of our colleagues for helpful discussions that informed the topics covered in this Review, including P. Abraham, R. Giannone, A. Guss, R. Hettich, C. Johnson, C. Maranas, J. Michener, E. Neidle and D. Salvachúa, among many others. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy for the US Department of Energy (DOE) under contract no. DE-AC36-08GO28308. E.E., A.B., E.K., A.Z.W. and G.T.B. are supported by The Center for Bioenergy Innovation (CBI), a US DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research (BER) in the DOE Office of Science. G.T.B. also thanks the US DOE Energy Efficiency and Renewable Energy (EERE) Bioenergy Technologies Office (BETO). L.D.E. is the recipient of a Canada Research Chair. L.D.E.’s research on lignin has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Genome BC and Genome Canada. J.E.M. acknowledges Research England for E3 funding. The views expressed in the Review do not necessarily represent the views of the DOE or the US Government. The US Government retains and the publisher, by accepting the Article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allows others to do so, for US Government purposes.

Author information

Authors and Affiliations

Authors

Contributions

E.E., A.B., E.K., A.Z.W., J.L.D., J.E.M., L.D.E. and G.T.B. wrote the manuscript and designed the figures. All authors edited the manuscript before submission.

Corresponding authors

Correspondence to Lindsay D. Eltis or Gregg T. Beckham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erickson, E., Bleem, A., Kuatsjah, E. et al. Critical enzyme reactions in aromatic catabolism for microbial lignin conversion. Nat Catal 5, 86–98 (2022). https://doi.org/10.1038/s41929-022-00747-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00747-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research