Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reaction product-driven restructuring and assisted stabilization of a highly dispersed Rh-on-ceria catalyst

Abstract

Understanding the structural dynamics of a catalyst under reaction conditions is challenging but crucial regarding catalyst design. Here, by a combination of in situ/operando characterization and first-principles modelling, we show that supported rhodium (Rh) catalysts undergo restructuring at the atomic scale in response to carbon monoxide (CO), a gaseous product formed during steam reforming of methane. Despite transformation of the initially prepared single-Rh-cation catalyst into Rh nanoparticles during hydrogen pretreatment, the formed Rh nanoparticles redispersed to low-nuclearity, CO-liganded Rh clusters (Rhm(CO)n (m = 1–3, n = 2–4)) under catalytic conditions. Theoretical simulations under reaction conditions suggest that the pressure of the CO product stabilizes Rhm(CO)n sites, while in situ/operando spectroscopy revealed a reversible restructuring between Rh3(CO)3 clusters and CO-ligand-free Rh clusters driven by CO pressure. Our findings demonstrate the importance of including product molecules in the atomic-scale understanding of catalytic active sites and mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of the coordination environment of Rh.
Fig. 2: Surface chemistry of Ce and O during H2 reduction and catalysis.
Fig. 3: Structure and stability of the CeO2(111) surface under gas pressure of H2 and H2O vapour.
Fig. 4: Structure and stability of Rh active sites.
Fig. 5: Relative stability of Rhm(CO)n sites in the reaction environment.
Fig. 6: Reversible restructuring of Rh active sites.

Similar content being viewed by others

Data availability

The atomic structures of CeO2(111) surfaces in Fig. 3a and CeO2(111)-supported Rh clusters used to construct Fig. 4a are available in Supplementary data. Other data that support the findings within this paper and of this study are available from the corresponding author(s) on reasonable request. Information requests regarding experimental and theoretical data should be addressed to F.T. and P.S., respectively.

References

  1. Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  Google Scholar 

  3. Tao, F. et al. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322, 932–934 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Tao, F. et al. Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327, 850–853 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Tao, F. F. & Salmeron, M. In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171–175 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Ouyang, R., Liu, J.-X. & Li, W.-X. Atomistic theory of ostwald ripening and disintegration of supported metal particles under reaction conditions. J. Am. Chem. Soc. 135, 1760–1771 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, J. C., Wang, Y. G. & Li, J. Toward rational design of oxide-supported single-atom catalysts: atomic dispersion of gold on ceria. J. Am. Chem. Soc. 139, 6190–6199 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, S. et al. Restructuring transition metal oxide nanorods for 100% selectivity in reduction of nitric oxide with carbon monoxide. Nano Lett. 13, 3310–3314 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Resasco, J. et al. Uniformity is key in defining structure-function relationships for atomically dispersed metal catalysts: the case of Pt/CeO2. J. Am. Chem. Soc. 142, 169–184 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Van Santen, R. A. Complementary structure sensitive and insensitive catalytic relationships. Acc. Chem. Res. 42, 57–66 (2008).

    Article  CAS  Google Scholar 

  11. Liu, L. et al. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: which are the working catalytic sites? ACS Catal. 9, 10626–10639 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, A. C. & Garland, C. W. Infrared studies of carbon monoxide chemisorbed on rhodium. J. Phys. Chem. 61, 1504–1512 (1957).

    Article  Google Scholar 

  13. Yates, J. T. Jr., Duncan, T. M., Worley, S. D. & Vaughan, R. W. Infrared spectra of chemisorbed CO on Rh. J. Chem. Phys. 70, 1219–1224 (1979).

    Article  CAS  Google Scholar 

  14. Matsubu, J. C., Yang, V. N. & Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 137, 3076–3084 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Matsubu, J. C. et al. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Tang, Y. et al. Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat. Commun. 10, 4488 (2019).

  17. Ligthart, D. A. J. M., van Santen, R. A. & Hensen, E. J. M. Influence of particle size on the activity and stability in steam methane reforming of supported Rh nanoparticles. J. Catal. 280, 206–220 (2011).

    Article  CAS  Google Scholar 

  18. Sun, G. & Sautet, P. Metastable structures in cluster catalysis from first-principles: structural ensemble in reaction conditions and metastability triggered reactivity. J. Am. Chem. Soc. 140, 2812–2820 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. DeRita, L. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Farmer, J. A. & Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 329, 933–936 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Campbell, C. T. & Mao, Z. Chemical potential of metal atoms in supported nanoparticles: dependence upon particle size and support. ACS Catal. 7, 8460–8466 (2017).

    Article  CAS  Google Scholar 

  22. Leung, L. W. H., He, J. W. & Goodman, D. W. Adsorption of CO on Rh (100) studied by infrared reflection–absorption spectroscopy. J. Chem. Phys. 93, 8328–8336 (1990).

    Article  CAS  Google Scholar 

  23. Eren, B. et al. Activation of Cu (111) surface by decomposition into nanoclusters driven by CO adsorption. Science 351, 475–478 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Mai, H.-X. et al. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 109, 24380–24385 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, S. et al. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes. J. Am. Chem. Soc. 138, 2629–2637 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Tang, Y. et al. Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4. J. Am. Chem. Soc. 141, 7283–7293 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, S. et al. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 6, 7938 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Nguyen, L. & Tao, F. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy. Rev. Sci. Instrum. 89, 024102 (2018).

    Article  PubMed  CAS  Google Scholar 

  30. Nguyen, L. & Tao, F. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis. Rev. Sci. Instrum. 87, 064101 (2016).

    Article  PubMed  CAS  Google Scholar 

  31. Mullins, D. R. The surface chemistry of cerium oxide. Surf. Sci. Rep. 70, 42–85 (2015).

    Article  CAS  Google Scholar 

  32. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  33. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  34. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  35. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  37. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  38. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1999).

    Article  Google Scholar 

  39. Cococcioni, M. & de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005).

    Article  CAS  Google Scholar 

  40. Murgida, G. E., Ferrari, V., Llois, A. M. & Ganduglia-Pirovano, M. V. Reduced CeO2(111) ordered phases as bulk terminations: introducing the structure of Ce3O5. Phys. Rev. Mater. 2, 083609 (2018).

    Article  Google Scholar 

  41. Olbrich, R. et al. Surface stabilizes ceria in unexpected stoichiometry. J. Phys. Chem. C 121, 6844–6851 (2017).

    Article  CAS  Google Scholar 

  42. Murgida, G. E. & Ganduglia-Pirovano, M. V. Evidence for subsurface ordering of oxygen vacancies on the reduced CeO2(111) surface using density-functional and statistical calculations. Phys. Rev. Lett. 110, 246101 (2013).

    Article  PubMed  CAS  Google Scholar 

  43. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  44. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  45. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124, 219906 (2006).

    Article  CAS  Google Scholar 

  46. Paier, J. et al. Screened hybrid density functionals applied to solids. J. Chem. Phys. 124, 154709 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Köhler, L. & Kresse, G. Density functional study of CO on Rh(111). Phys. Rev. B 70, 165405 (2004).

    Article  CAS  Google Scholar 

  48. Reuter, K. & Scheffler, M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 65, 035406 (2001).

    Article  CAS  Google Scholar 

  49. Reuter, K. & Scheffler, M. Composition and structure of the RuO2(110) surface in an O2 and CO environment: implications for the catalytic formation of CO2. Phys. Rev. B 68, 045407 (2003).

    Article  CAS  Google Scholar 

  50. Mayernick, A. D. & Janik, M. J. Ab initio thermodynamic evaluation of Pd atom interaction with CeO2 surfaces. J. Chem. Phys. 131, 084701 (2009).

    Article  PubMed  CAS  Google Scholar 

  51. Senftle, T. P., van Duin, A. C. T. & Janik, M. J. Role of site stability in methane activation on PdxCe1–xOδ surfaces. ACS Catal. 5, 6187–6199 (2015).

    Article  CAS  Google Scholar 

  52. Werner, K. et al. Toward an understanding of selective alkyne hydrogenation on ceria: on the impact of O vacancies on H2 interaction with CeO2(111). J. Am. Chem. Soc. 139, 17608–17616 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Wu, Z. et al. Direct neutron spectroscopy observation of cerium hydride species on a cerium oxide catalyst. J. Am. Chem. Soc. 139, 9721–9727 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Mullins, D. R. et al. Water dissociation on CeO2(100) and CeO2(111) thin films. J. Phys. Chem. C 116, 19419–19428 (2012).

    Article  CAS  Google Scholar 

  55. Jerratsch, J.-F. et al. Electron localization in defective ceria films: a study with scanning-tunneling microscopy and density-functional theory. Phys. Rev. Lett. 106, 246801 (2011).

    Article  PubMed  CAS  Google Scholar 

  56. Fernandez-Torre, D., Carrasco, J., Ganduglia-Pirovano, M. V. & Perez, R. Hydrogen activation, diffusion, and clustering on CeO2(111): a DFT+U study. J. Chem. Phys. 141, 014703 (2014).

    Article  PubMed  CAS  Google Scholar 

  57. Murgida, G. E., Ferrari, V., Ganduglia-Pirovano, M. V. & Llois, A. M. Ordering of oxygen vacancies and excess charge localization in bulk ceria: a DFT+U study. Phys. Rev. B 90, 115120 (2014).

    Article  CAS  Google Scholar 

  58. Wu, X. P., Gong, X. Q. & Lu, G. Z. Role of oxygen vacancies in the surface evolution of H at CeO2(111): a charge modification effect. Phys. Chem. Chem. Phys. 17, 3544–3549 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Wu, X. P. & Gong, X. Q. Clustering of oxygen vacancies at CeO2(111): critical role of hydroxyls. Phys. Rev. Lett. 116, 086102 (2016).

    Article  PubMed  CAS  Google Scholar 

  60. Wolf, M. J., Kullgren, J. & Hermansson, K. Comment on “clustering of oxygen vacancies at CeO2(111): critical role of hydroxyls”. Phys. Rev. Lett. 117, 279601 (2016).

    Article  PubMed  Google Scholar 

  61. Wu, X. P. & Gong, X. Q. Wu and Gong reply. Phys. Rev. Lett. 117, 279602 (2016).

    Article  PubMed  Google Scholar 

  62. Piotrowski, M. J., Piquini, P. & Da Silva, J. L. Density functional theory investigation of 3d, 4d, and 5d 13-atom metal clusters. Phys. Rev. B 81, 155446 (2010).

    Article  CAS  Google Scholar 

  63. Feibelman, P. J. et al. The CO/Pt (111) Puzzle. J. Phys. Chem. B 105, 4018–4025 (2001).

    Article  CAS  Google Scholar 

  64. Kresse, G., Gil, A. & Sautet, P. Significance of single-electron energies for the description of CO on Pt(111). Phys. Rev. B 68, 073401 (2003).

    Article  CAS  Google Scholar 

  65. Mason, S. E., Grinberg, I. & Rappe, A. M. First-principles extrapolation method for accurate CO adsorption energies on metal surfaces. Phys. Rev. B 69, 161401 (2004).

    Article  CAS  Google Scholar 

  66. Schimka, L. et al. Accurate surface and adsorption energies from many-body perturbation theory. Nat. Mater. 9, 741–744 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Sumaria, V., Nguyen, L. T., Tao, F. F. & Sautet, P. Optimal packing of CO at high coverage on Pt(100) and Pt(111) surfaces. ACS Catal. 10, 9533–9544 (2020).

    Article  CAS  Google Scholar 

  68. Fang, C.-Y. et al. Reversible metal aggregation and redispersion driven by the catalytic water gas shift half-reactions: interconversion of single-site rhodium complexes and tetrarhodium clusters in zeolite HY. ACS Catal. 9, 3311–3321 (2019).

    Article  CAS  Google Scholar 

  69. Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

    Article  CAS  Google Scholar 

  70. Nystrom, N. A., Levine, M. J., Roskies, R. Z. & Scott, J. R. In Proc. 2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure 1–8 (2015).

Download references

Acknowledgements

The experimental part of this study was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy under grant no. DE-SC0014561, and by US National Science Foundation under grant no. NSF-CHE-1462121 and NSF-CHE-1800577; the computational part (P.S. and G.Y.) was supported by the NSF Award no. NSF-CHE-1800601. Yuting Li was partially supported by the National Science Foundation under grant no. NSF-OIA-1539105. We thank Fuzhou University (FZU) for the large amount of machine time and assistance provided in performing various TEM studies and spectroscopic studies for characterizations of samples. The calculations in this work used computational and storage services associated with the Hoffman2 shared computational cluster located at University of California Los Angeles. This work also used the Extreme Science and Engineering Discovery Environment, which is supported by National Science Foundation grant no. ACI-1548562 (ref. 69). Specifically, the systems Bridges, Bridges-2 and Comet were used. The Bridges system is supported by NSF award no. ACI-1445606, at the Pittsburgh Supercomputing Center70. The offer of valuable beam time from Y. Iwasawa, Director of the Innovation Research Center for Fuel Cells at The University of Electro-Communications in Tokyo, Japan is highly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

P.S. and F.T. conceptualized and supervised the work. G.Y. performed computational studies. Y.T., Yuting Li, Yixiao Li and L.N. performed experiments. Y.T., L.N., T.S. and K.H. contributed to EXAFS experiments. F.T. guided experimental studies. The draft was prepared and edited by G.Y., Y.T., F.T. and P.S.

Corresponding authors

Correspondence to Franklin Feng Tao or Philippe Sautet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Mie Andersen, Christoph Rameshan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–13, Figs. 1–29, Tables 1–11 and references.

Supplementary Data

Atomic positions of structures in Fig. 3a and structures used to construct Fig. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, G., Tang, Y., Li, Y. et al. Reaction product-driven restructuring and assisted stabilization of a highly dispersed Rh-on-ceria catalyst. Nat Catal 5, 119–127 (2022). https://doi.org/10.1038/s41929-022-00741-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00741-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing