Author Correction: Coupling electrochemical CO_{2} conversion with CO_{2} capture

Ian Sullivan(D), Andrey Goryachev(D), Ibadillah A. Digdaya, Xueqian Li(D, Harry A. Atwater (D), David A. Vermaas (D) and Chengxiang Xiang (D)

Correction to: Nature Catalysis https://doi.org/10.1038/s41929-021-00699-7, published online 18 November 2021.
In the version of this article, there were errors in Fig. 2 a and d. In Fig. 2a, we have changed Cu^{2+} to $\mathrm{Cu}(0)$ in the revised version. While the two references cited in our paper used Cu^{2+} in their schematics, ${ }^{1,2}$ we believe that $\mathrm{Cu}(0)$ is the correct representation for the electrochemically mediated amine regeneration (EMAR) ${ }^{3}$. To be clear, the Cu metal anode is oxidized into cupric ions. The cupric ions then bind to the carbamate and displace the CO_{2} and form a copper-amine complex. The copper-amine complex is then reduced at the cathode where Cu metal is plated out.
In Fig. 2d, we have changed the polarity of the cathode and anode in the revised version. A proton is released at the anode, while a hydroxide is released at the cathode. We have also simplified the quinone/hydroquinone chemistry in the revised version to be consistent with proton and hydroxide stoichiometry. The original and revised Fig. 2 images are shown below.
The changes have been made to the html and PDF versions of the article.

References

1. Stern, M. C., Simeon, F., Herzog, H. \& Hatton, T. A. Post-combustion carbon dioxide capture using electrochemically mediated amine regeneration. Energy Environ. Sci. https://doi.org/10.1039/c3ee41165f (2013).
2. Stern, M. C. \& Alan Hatton, T. Bench-scale demonstration of CO_{2} capture with electrochemically-mediated amine regeneration. RSC Adv. https://doi. org/10.1039/c3ra46774k (2014).
3. Wu, X. et al. Electrochemically-mediated amine regeneration of CO_{2} capture: From electrochemical mechanism to bench-scale visualization study. Appl. Energy https://doi.org/10.1016/j.apenergy.2021.117554 (2021).

Original

Fig. 2 | Original and corrected.

Published online: 20 January 2022
https://doi.org/10.1038/s41929-022-00734-1
© Springer Nature Limited 2022

