Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid

Abstract

Active and stable electrocatalysts for the oxygen evolution reaction are required to produce hydrogen from water using renewable electricity. Here we report that incorporating Mn into the spinel lattice of Co3O4 can extend the catalyst lifetime in acid by two orders of magnitude while maintaining the activity. The activation barrier of the obtained spinel Co2MnO4 is comparable to that of state-of-the-art iridium oxides, most probably due to the ideal binding energies of the oxygen evolution reaction intermediates, as shown using density functional theory calculations. The calculations also show that the thermodynamic landscape of Co2MnO4 suppresses dissolution, which results in a lifetime of over 2 months (1,500 hours) at 200 mA cm−2geo at pH 1. As the lifetimes of other 3d metal oxygen evolution catalysts are in the order of days and weeks, despite current densities being lower by an order of magnitude, our results are an important step towards the realization of noble-metal-free water electrolysers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of Co2MnO4 before and after electrolysis.
Fig. 2: OER activity of Co2MnO4 at 25 °C.
Fig. 3: OER activities at elevated temperature.
Fig. 4: Long-term stability of Co2MnO4 during the OER in acid.
Fig. 5: Mechanistic investigation and activity predictions.
Fig. 6: Theoretical stability investigations.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon request. The atomic coordinates of the computational models are given in Supplementary Data 1. The structural parameters derived from the Rietveld refinement are given in Supplementary Data 24 for Co2MnO4 before electrolysis and after electrolysis for 4 h and 23 h, respectively. The structures are also available from the Cambridge Crystal Structure Data Centre (https://www.ccdc.cam.ac.uk/) with the deposition codes 2098166, 2098164 and 2098165 for Co2MnO4 before the electrolysis and after the electrolysis at 4 and 23 h, respectively.

References

  1. Smalley, R. E. Future global energy prosperity: the terawatt challenge. MRS Bull. 30, 412–417 (2011).

    Article  Google Scholar 

  2. Kibsgaard, J. & Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 4, 430–433 (2019).

    Article  Google Scholar 

  3. Lewinski, K. A., Van der Vliet, D. & Luopa, S. M. NSTF advances for PEM electrolysis–the effect of alloying on activity of NSTF electrolyzer catalysts and performance of NSTF based PEM electrolyzers. ECS Trans. 69, 893–917 (2015).

    Article  CAS  Google Scholar 

  4. Marshall, A. T., Sunde, S., Tsypkin, M. & Tunold, R. Performance of a PEM water electrolysis cell using IrxRuyTazO2 electrocatalysts for the oxygen evolution electrode. Int. J. Hydrogen Energy 32, 2320–2324 (2007).

    Article  CAS  Google Scholar 

  5. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Vesborg, P. C. K. & Jaramillo, T. F. Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012).

    Article  CAS  Google Scholar 

  8. Cowley, A. PGM Market Report May 2020 (Johnson Matthey, 2020); https://matthey.com/en/news/2020/pgm-market-report-may-2020

  9. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article  CAS  Google Scholar 

  10. Blasco-Ahicart, M., Soriano-López, J., Carbó, J. J., Poblet, J. M. & Galan-Mascaros, J. R. Polyoxometalate electrocatalysts based on Earth-abundant metals for efficient water oxidation in acidic media. Nat. Chem. 10, 24–30 (2017).

    Article  PubMed  Google Scholar 

  11. Jiao, F. & Frei, H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. 48, 1841–1844 (2009).

    Article  CAS  Google Scholar 

  12. Mondschein, J. S. et al. Crystalline cobalt oxide films for sustained electrocatalytic oxygen evolution under strongly acidic conditions. Chem. Mater. 29, 950–957 (2017).

    Article  CAS  Google Scholar 

  13. Han, L. et al. Enhanced activity and acid pH stability of Prussian blue-type oxygen evolution electrocatalysts processed by chemical etching. J. Am. Chem. Soc. 138, 16037–16045 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Huynh, M., Ozel, T., Liu, C., Lau, E. C. & Nocera, D. G. Design of template-stabilized active and Earth-abundant oxygen evolution catalysts in acid. Chem. Sci. 8, 4779–4794 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kwong, W. L., Lee, C. C., Shchukarev, A. & Messinger, J. Cobalt-doped hematite thin films for electrocatalytic water oxidation in highly acidic media. Chem. Commun. 55, 5017–5020 (2019).

    Article  CAS  Google Scholar 

  16. Anantharaj, S., Karthick, K. & Kundu, S. Spinel cobalt titanium binary oxide as an all-non-precious water oxidation electrocatalyst in acid. Inorg. Chem. 58, 8570–8576 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Chatti, M. et al. Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C. Nat. Catal. 2, 457–465 (2019).

    Article  CAS  Google Scholar 

  18. Zhou, L. et al. Rutile alloys in the Mn–Sb–O system stabilize Mn3+ to enable oxygen evolution in strong acid. ACS Catal. 8, 10938–10948 (2018).

    Article  CAS  Google Scholar 

  19. Moreno-Hernandez, I. A. et al. Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H2SO4. Energy Environ. Sci. 10, 2103–2108 (2017).

    Article  CAS  Google Scholar 

  20. Ghadge, S. D. et al. Influence of defects on activity-stability of Cu1.5Mn1.5O4 for acid-mediated oxygen evolution reaction. J. Electrochem. Soc. 167, 144511 (2020).

    Article  CAS  Google Scholar 

  21. Frydendal, R., Paoli, E. A., Chorkendorff, I., Rossmeisl, J. & Stephens, I. E. L. Toward an active and stable catalyst for oxygen evolution in acidic media: Ti-stabilized MnO2. Adv. Energy Mater. 5, 1500991 (2015).

    Article  Google Scholar 

  22. Mondschein, J. S. et al. Intermetallic Ni2Ta electrocatalyst for the oxygen evolution reaction in highly acidic electrolytes. Inorg. Chem. 57, 6010–6015 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Schäfer, H. et al. Steel-based electrocatalysts for efficient and durable oxygen evolution in acidic media. Catal. Sci. Technol. 8, 2104–2116 (2018).

    Article  Google Scholar 

  24. Hu, F. et al. Amorphous metallic NiFeP: a conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv. Mater. 29, 1606570 (2017).

    Article  Google Scholar 

  25. Wu, J. et al. Exfoliated 2D transition metal disulfides for enhanced electrocatalysis of oxygen evolution reaction in acidic medium. Adv. Mater. Inter. 3, 1500669 (2016).

    Article  Google Scholar 

  26. Patel, P. P. et al. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts. Sci Rep. 6, 28367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huynh, M., Bediako, D. K. & Nocera, D. G. A functionally stable manganese oxide oxygen evolution catalyst in acid. J. Am. Chem. Soc. 136, 6002–6010 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Li, A. et al. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions. Angew. Chem. Int. Ed. 58, 5054–5058 (2019).

    Article  CAS  Google Scholar 

  29. McCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Forsythe, R. C. & Müller, A. M. Quo vadis water oxidation? Catal. Today https://doi.org/10.1016/j.cattod.2020.06.011 (in the press).

  31. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon, 1966).

  32. Rios, E., Chartier, P. & Gautier, J. L. Oxygen evolution electrocatalysis in alkaline medium at thin MnxCo3–xO4 (0 ≤ x ≤ 1) spinel films on glass/SnO2: F prepared by spray pyrolysis. Solid State Sci. 1, 267–277 (1999).

    Article  CAS  Google Scholar 

  33. Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969).

    Article  CAS  Google Scholar 

  34. Navrotsky, A. & Kleppa, O. J. The thermodynamics of cation distributions in simple spinels. J. Inorg. Nucl. Chem. 29, 2701–2714 (1967).

    Article  CAS  Google Scholar 

  35. Ayers, K. et al. Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale. Annu. Rev. Chem. Biomol. Eng. 10, 219–239 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Vargas-Barbosa, N. M. Insights into Electrochemical and Photoelectrochemical Water-Splitting (Pennsylvania State Univ., 2015).

  37. Nurlaela, E., Shinagawa, T., Qureshi, M., Dhawale, D. S. & Takanabe, K. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide. ACS Catal. 6, 1713–1722 (2016).

    Article  CAS  Google Scholar 

  38. Guo, C. et al. Toward computational design of chemical reactions with reaction phase diagram. Wiley Interdiscip. Rev. Comput. Mol. Sci. 11, e1514 (2021).

    Article  CAS  Google Scholar 

  39. Lankauf, K. et al. MnxCo3–xO4 spinel oxides as efficient oxygen evolution reaction catalysts in alkaline media. Int. J. Hydrogen Energy 45, 14867–14879 (2020).

    Article  CAS  Google Scholar 

  40. Chan, K. & Nørskov, J. K. Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663–2668 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Li, H., Guo, C., Fu, Q. & Xiao, J. Toward fundamentals of confined electrocatalysis in nanoscale reactors. J. Phys. Chem. Lett. 10, 533–539 (2019).

    Article  PubMed  Google Scholar 

  42. Campbell, C. T. The degree of rate control: a powerful tool for catalysis research. ACS Catal. 7, 2770–2779 (2017).

    Article  CAS  Google Scholar 

  43. Guo, C., Mao, Y., Yao, Z., Chen, J. & Hu, P. Examination of the key issues in microkinetics: CO oxidation on Rh(111). J. Catal. 379, 52–59 (2019).

    Article  CAS  Google Scholar 

  44. Xiao, J., Kuc, A., Frauenheim, T. & Heine, T. Stabilization mechanism of ZnO nanoparticles by Fe doping. Phys. Rev. Lett. 112, 106102 (2014).

    Article  PubMed  Google Scholar 

  45. Kato, K. & Tanaka, H. Visualizing charge densities and electrostatic potentials in materials by synchrotron X-ray powder diffraction. Adv. Phys. X 1, 55–80 (2016).

    Google Scholar 

  46. Kato, K., Tanaka, Y., Yamauchi, M., Ohara, K. & Hatsui, T. A statistical approach to correct X-ray response non-uniformity in microstrip detectors for high-accuracy and high-resolution total-scattering measurements. J. Synchrotron Radiat. 26, 762–773 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Izumi, F. & Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 130, 15–20 (2007).

    Article  CAS  Google Scholar 

  48. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  49. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  51. Zhang, Y. & Yang, W. Comment on “Generalized gradient approximation made simple”. Phys. Rev. Lett. 80, 890–890 (1998).

    Article  CAS  Google Scholar 

  52. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    Article  CAS  Google Scholar 

  53. Zasada, F. et al. Surface structure and morphology of M[CoM′]O4 (M = Mg, Zn, Fe, Co and M′ = Ni, Al, Mn, Co) spinel nanocrystals—DFT+U and TEM screening investigations. J. Phys. Chem. 118, 19085–19097 (2014).

    CAS  Google Scholar 

  54. Wan, H., Østergaard, T. M., Arnarson, L. & Rossmeisl, J. Climbing the 3D volcano for the oxygen reduction reaction using porphyrin motifs. ACS Sustain. Chem. Eng. 7, 611–617 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Kikitsu and K. Takahashi at RIKEN for assistance with TEM and ICP-MS measurements and analysis. The synchrotron radiation experiments were performed at the BL14B2 (XAFS) and BL44B2 (SR-PXRD) of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal no. 2021A2013) and RIKEN (proposal no. 20210064), respectively. The XAFS spectrum of LiMn2O4 was utilized by the SPring-8 BL14B2 XAFS database. This work was supported by the New Energy and Industrial Technology Development Organization (NEDO) and JSPS Grant-in-Aid for Scientific Research (no. 18H02070). H.H. also thanks the National Key R&D Program of China (no. 2017YFA0204804) and the National Natural Science Foundation of China (no. 21761142018). J.X. acknowledges the financial support from the National Key R&D Program of China (No. 2021YFA1500702), the DNL Cooperation Fund, CAS (no. DNL202003), the National Natural Science Foundation of China (22172156, 91845103, 91945302 and 21802124), the Strategic Priority Research Program of Chinese Academy of Sciences (no. XDB36030200), the funding support by the LiaoNing Revitalization Talents Program (XLYC1907099) and the State Key Laboratory of Catalysis in DICP (no. N-19-13).

Author information

Authors and Affiliations

Authors

Contributions

A.L., S.K. and R.N. conceived and designed the experiments; S.K., A.L., Q.J. and K.A. performed the experiments; C.G. and J.X. performed the DFT calculation; S.K., A.L., H.O., K.A., D.H. and R.N. analysed the data; A.L., S.K., C.G., H.O., H.H., J.X. and R.N. co-wrote the paper. All the authors discussed the results and critically reviewed the manuscript.

Corresponding authors

Correspondence to Jianping Xiao or Ryuhei Nakamura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jongwoo Lim, Nan Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–59, Tables 1–24, Notes 1–3 and references.

Supplementary Video 1

Bubble generation from a Co2MnO4 catalyst deposited on an FTO substrate at room temperature (25 °C) at current densities of 20 mA cm−2geo, 50 mA cm−2geo, 100 mA cm−2geo, 200 mA cm−2geo, 500 mA cm−2geo and 1,000 mA cm−2geo, respectively.

Supplementary Data 1

The atomic coordinates of the computational models.

Supplementary Data 2

Crystallographic data of Co2MnO4 before electrolysis derived from Rietveld refinement.

Supplementary Data 3

Crystallographic data of Co2MnO4 after electrolysis at 100 mA cm−2geo (pH 1 H2SO4, 25 °C) for 4 h derived from Rietveld refinement.

Supplementary Data 4

Crystallographic data of Co2MnO4 after electrolysis at 100 mA cm−2geo (pH 1 H2SO4, 25 °C) for 23 h derived from Rietveld refinement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Kong, S., Guo, C. et al. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat Catal 5, 109–118 (2022). https://doi.org/10.1038/s41929-021-00732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00732-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing