Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol

Abstract

The surface structure of heterogeneous catalysts is closely associated with their catalytic performance. Current efforts for structural modification mainly focus on improving the catalyst synthesis details. Here we reveal an induced activation strategy to manipulate the catalyst surface reconstruction process by controlling the composition of reducing agents at the activation stage. Exposing the commercial Cu/ZnO/Al2O3 catalyst to a H2/H2O/CH3OH/N2 mixture at 300 °C and atmospheric pressure is found to accelerate the migration of ZnOx species onto the surface of metallic Cu0 nanoparticles via an adsorbate-induced strong metal–support interaction. Such a morphological evolution improves the long-term stability by threefold and results in more abundant Cu–ZnOx interfacial sites with catalytic activity enhanced by twofold towards the methanol steam reforming reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MSR activities of Cu/ZnO/Al2O3 after different activation treatments.
Fig. 2: Microscopy characterizations of activated Cu/ZnO/Al2O3.
Fig. 3: Electronic property of Cu/ZnO/Al2O3 activated with different procedures.
Fig. 4: Mechanism analysis of the MSR reaction over Cu/ZnO/Al2O3.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Tao, F. F. & Salmeron, M. In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171–174 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Tao, F. F. & Crozier, P. A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 116, 3487–3539 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Kattel, S., Ramírez, P. J., Chen, J. G., Rodriguez, J. A. & Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296–1299 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Tang, M. et al. Recent progresses on structural reconstruction of nanosized metal catalysts via controlled-atmosphere transmission electron microscopy: a review. ACS Catal. 10, 14419–14450 (2020).

    Article  CAS  Google Scholar 

  5. Zhu, B. et al. Reshaping of metal nanoparticles under reaction conditions. Angew. Chem. Int. Ed. 59, 2171–2180 (2020).

    Article  CAS  Google Scholar 

  6. Zhu, M. H. et al. Promotion mechanisms of iron oxide-based high temperature water–gas shift catalysts by chromium and copper. ACS Catal. 6, 4455–4464 (2016).

    Article  CAS  Google Scholar 

  7. Pondick, J. V., Woods, J. M., Xing, J., Zhou, Y. & Cha, J. J. Stepwise sulfurization from MoO3 to MoS2 via chemical vapor deposition. ACS Appl. Nano Mater. 1, 5655–5661 (2018).

    Article  CAS  Google Scholar 

  8. de Smit, E. & Weckhuysen, B. M. The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chem. Soc. Rev. 37, 2758–2781 (2008).

    Article  PubMed  Google Scholar 

  9. Hansen, P. L. et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Forzatti, P. & Lietti, L. Catalyst deactivation. Catal. Today 52, 165–181 (1999).

    Article  CAS  Google Scholar 

  11. Prieto, G., Zečević, J., Friedrich, H., de Jong, K. P. & de Jongh, P. E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 12, 34–39 (2012).

    Article  PubMed  Google Scholar 

  12. Goodman, E. D. et al. Supported catalyst deactivation by decomposition into single atoms is suppressed by increasing metal loading. Nat. Catal. 2, 748–755 (2019).

    Article  CAS  Google Scholar 

  13. Argyle, M. D. & Bartholomew, C. H. Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5, 145–269 (2015).

    Article  CAS  Google Scholar 

  14. Budiman, A. et al. Design and preparation of high-surface-area Cu/ZnO/Al2O3 catalysts using a modified Co-precipitation method for the water-gas shift reaction. Appl. Catal. A 462–463, 220–226 (2013).

    Article  Google Scholar 

  15. Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Schott, V. et al. Chemical activity of thin oxide layers: strong interactions with the support yield a new thin-film phase of ZnO. Angew. Chem. Int. Ed. 52, 11925–11929 (2013).

    Article  CAS  Google Scholar 

  17. Kuld, S., Conradsen, C., Moses, P. G., Chorkendorff, I. & Sehested, J. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst. Angew. Chem. Int. Ed. 53, 5941–5945 (2014).

    Article  CAS  Google Scholar 

  18. Lunkenbein, T., Schumann, J., Behrens, M., Schlögl, R. & Willinger, M. G. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interactions. Angew. Chem. Int. Ed. 54, 4544–4548 (2015).

    Article  CAS  Google Scholar 

  19. van den Berg, R. et al. Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. Nat. Commun. 7, 13057 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Palo, D. R., Dagle, R. A. & Holladay, J. D. Methanol steam reforming for hydrogen production. Chem. Rev. 107, 3992–4021 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. van den Berg, R. et al. Support functionalization to retard Ostwald ripening in copper methanol synthesis catalysts. ACS Catal. 5, 4439–4448 (2015).

    Article  Google Scholar 

  22. Zhu, M. H. et al. Strong metal–support interactions between copper and iron oxide during the high-temperature water-gas shift reaction. Angew. Chem. Int. Ed. 58, 9083–9087 (2019).

    Article  CAS  Google Scholar 

  23. Resasco, D. E. & Haller, G. L. A model of metal-oxide support interaction for Rh on TiO2. J. Catal. 82, 279–287 (1983).

    Article  CAS  Google Scholar 

  24. Freakley, S. J. et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351, 965–968 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Fukahori, S. et al. Hydrogen production from methanol using a SiC fiber-containing paper composite impregnated with Cu/ZnO catalyst. Appl. Catal. A 310, 138–144 (2006).

    Article  CAS  Google Scholar 

  26. Zhu, J. et al. Flame synthesis of Cu/ZnO–CeO2 catalysts: synergistic metal–support interactions promote CH3OH selectivity in CO2 hydrogenation. ACS Catal. 11, 4880–4892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fujitani, T., Nakamur, I., Uchijima, T. & Nakamura, J. The kinetics and mechanism of methanol synthesis by hydrogenation of CO2 over a Zn-deposited Cu(111) surface. Surf. Sci. 383, 285–298 (1997).

    Article  CAS  Google Scholar 

  28. Fujitani, T. & Nakamura, J. The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity. Catal. Lett. 56, 119–124 (1998).

    Article  CAS  Google Scholar 

  29. Grunwaldt, J. D., Molenbroek, A. M., Topsøe, N. Y., Topsøe, H. & Clausen, B. S. In situ investigations of structural changes in Cu/ZnO catalysts. J. Catal. 194, 452–460 (2000).

    Article  CAS  Google Scholar 

  30. Divins, N. J. et al. Operando high-pressure investigation of size-controlled CuZn catalysts for the methanol synthesis reaction. Nat. Commun. 12, 1435 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kanai, Y. & Watanabe, T. Evidence for the migration of ZnOx in a Cu/ZnO methanol synthesis catalyst. Catal. Lett. 27, 67–78 (1994).

    Article  CAS  Google Scholar 

  32. Andreasen, J. W. et al. Activation of a Cu/ZnO catalyst for methanol synthesis. J. Appl. Cryst. 39, 209–221 (2006).

    Article  CAS  Google Scholar 

  33. Quang, H. T. et al. In situ observations of free-standing graphene-like mono- and bilayer ZnO membranes. ACS Nano. 9, 11408–11413 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Ngantcha, J. P., Gerland, M., Kihn, Y. & Rivière, A. Correlation between microstructure and mechanical spectroscopy of a Cu-Cu2O alloy between 290 K and 873 K. Eur. Phys. J. Appl. Phys. 29, 83–89 (2004).

    Article  Google Scholar 

  35. Chen, A. et al. Structure of the catalytically active copper–ceria interfacial perimeter. Nat. Catal. 2, 334–341 (2019).

    Article  CAS  Google Scholar 

  36. Chamorro, W. et al. Role of Cu+ on ZnS:Cu p-type semiconductor films grown by sputtering: influence of substitutional Cu in the structural, optical and electronic properties. RSC Adv. 6, 43480–43488 (2016).

    Article  CAS  Google Scholar 

  37. Wang, Y. et al. Electronic structures of Cu2O, Cu4O3, and CuO: a joint experimental and theoretical study. Phys. Rev. B 94, 245418 (2016).

    Article  Google Scholar 

  38. Powell, C. J. Recommended Auger parameters for 42 elemental solids. J. Electron. Spectrosc. Relat. Phenom. 185, 1–3 (2012).

    Article  CAS  Google Scholar 

  39. Boz, I., Sahibzada, M. & Metcalfe, I. S. Kinetics of the higher alcohol synthesis over a K-promoted CuO/ZnO/AI2O3 catalyst. Ind. Eng. Chem. Res. 33, 2021–2028 (1994).

  40. Liu, Z. et al. High-pressure CO adsorption on Cu-based catalysts: Zn-induced formation of strongly bound CO monitored by ATR-IR spectroscopy. Langmuir 27, 4728–4733 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, Y. & Woll, C. IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: bridging the materials gap. Chem. Soc. Rev. 46, 1875–1932 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, H. et al. Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle. Nat. Catal. 4, 418–424 (2021).

    Article  CAS  Google Scholar 

  43. Matsubu, J. C. et al. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Sá, S., Silva, H., Brandão, L., Sousa, J. M. & Mendes, A. Catalysts for methanol steam reforming—a review. Appl. Catal. B 99, 43–57 (2010).

    Article  Google Scholar 

  45. Lin, S., Johnson, R. S., Smith, G. K., Xie, D. & Guo, H. Pathways for methanol steam reforming involving adsorbed formaldehyde and hydroxyl intermediates on Cu(111): density functional theory studies. Phys. Chem. Chem. Phys. 13, 9622–9631 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Takahashi, K., Takezawa, N. & Kobayashi, H. The mechanism of steam reforming of methanol over a copper-silica catalyst. Appl. Catal. 2, 363–366 (1982).

    Article  CAS  Google Scholar 

  47. Takezawa, N. & Iwasa, N. Steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group VIII metals. Catal. Today 36, 45–56 (1997).

    Article  CAS  Google Scholar 

  48. Frank, B. et al. Steam reforming of methanol over copper-containing catalysts: influence of support material on microkinetics. J. Catal. 246, 177–192 (2007).

    Article  CAS  Google Scholar 

  49. Ploner, K. et al. Mechanistic insights into the catalytic methanol steam reforming performance of Cu/ZrO2 catalysts by in situ and operando studies. J. Catal. 391, 497–512 (2020).

    Article  CAS  Google Scholar 

  50. Li, D. et al. NiAl2O4 spinel supported Pt catalyst: high performance and origin in aqueous-phase reforming of methanol. ACS Catal. 9, 9671–9682 (2019).

    Article  CAS  Google Scholar 

  51. Reichenbach, T. et al. Ab initio study of CO2 hydrogenation mechanisms on inverse ZnO/Cu catalysts. J. Catal. 360, 168–174 (2018).

    Article  CAS  Google Scholar 

  52. Reichenbach, T., Walter, M., Moseler, M., Hammer, B. & Bruix, A. Effects of gas-phase conditions and particle size on the properties of Cu(111)-supported ZnyOx particles revealed by global optimization and ab initio thermodynamics. J. Phys. Chem. C 123, 30903–30916 (2019).

    Article  CAS  Google Scholar 

  53. van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article  Google Scholar 

  54. Dong, J. et al. Reaction-induced strong metal–support interactions between metals and inert boron nitride nanosheets. J. Am. Chem. Soc. 142, 17167–17174 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, Y. et al. Strong evidence of the role of H2O in affecting methanol selectivity from CO2 hydrogenation over Cu-ZnO-ZrO2. Chem 6, 419–430 (2020).

    Article  CAS  Google Scholar 

  56. Behrens, M., Kasatkin, I., Kühl, S. & Weinberg, G. Phase-pure Cu,Zn,Al hydrotalcite-like materials as precursors for copper rich Cu/ZnO/Al2O3 catalysts. Chem. Mater. 22, 386–397 (2010).

    Article  CAS  Google Scholar 

  57. Yu, K. M. et al. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature. Nat. Commun. 3, 1230 (2012).

    Article  PubMed  Google Scholar 

  58. Kresse, G. & Furthmiiller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  59. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  60. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  61. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  63. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  64. Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

  65. Mateos-Pedrero, C., Azenha, C., Tanaka, A. D. P., Sousa, J. M. & Mendes, A. The influence of the support composition on the physicochemical and catalytic properties of Cu catalysts supported on zirconia-alumina for methanol steam reforming. Appl. Catal. B 277, 119243 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (22078089, M.Z.; 21908054, Z.X.; and 22075076, Z.X.), Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (M.Z. and S.D.), Shanghai Sailing Program (19YF1410600, M.Z.), Shanghai Rising-star Program (20QA1402400, S.D.), Shanghai Municipal Science and Technology Major Project (2018SHZDZX03, S.D.) and Fundamental Research Funds for the Central Universities, the Programme of Introducing Talents of Discipline to Universities (B16017, S.D.). The research at Lehigh University is supported by the Center for Understanding & Control of Acid Gas-Induced Evolution of Materials for Energy, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under grant DE-SC0012577 (I.E.W.). X-ray absorption spectroscopy measurements were carried out at the Shanghai Synchrotron Radiation Facility. We thank P. F. Liu and Y. W. Liu at East China University of Science and Technology for the help with X-ray absorption spectroscopy characterization. Additional support was provided by the Frontiers Science Center for Materiobiology and Dynamic Chemistry and the Feringa Nobel Prize Scientist Joint Research Center.

Author information

Authors and Affiliations

Authors

Contributions

D.L., Z.X., I.E.W. and M.Z. conceived the idea and designed the present work. D.L. and T.P. synthesized the catalysts and performed the catalyst characterization. F. Xu, X.L., P.T. and F. Xuan conducted the DFT calculations. X.T. and S.D. performed the aberration-corrected STEM measurements. Data were discussed among all coauthors. D.L. and M.Z. wrote the paper with contributions from all authors.

Corresponding authors

Correspondence to Zhi Xu, Israel E. Wachs or Minghui Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–43, Notes 1–5, Scheme 1 and Tables 1–10.

Supplementary Data 1

All optimized structures.

Supplementary Data 2

The most stable models among all optimized structures.

Source data

Source Data Fig. 1

Activity, stability and in situ X-ray diffraction.

Source Data Fig. 2

STEM–EELS.

Source Data Fig. 3

Quasi in situ X-ray photoelectron spectroscopy and in situ CO DRIFTS.

Source Data Fig. 4

In situ temperature-programmed DRIFTS and DFT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Xu, F., Tang, X. et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nat Catal 5, 99–108 (2022). https://doi.org/10.1038/s41929-021-00729-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00729-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing