Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2


The oxidation of methane, the main component of natural gas, to selectively form oxygenated chemical feedstocks using molecular oxygen has been a long-standing grand challenge in catalysis. Here, using gold nanoparticles supported on the zeolite ZSM-5, we introduce a method to oxidize methane to methanol and acetic acid in water at temperatures between 120 and 240 °C using molecular oxygen in the absence of any added coreductant. Electron microscopy reveals that the catalyst does not contain gold atoms or clusters, but rather gold nanoparticles are the active component, while a mechanism involving surface adsorbed species is proposed in which methanol and acetic acid are formed via parallel pathways.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic performance of Au-ZSM-5 catalysts for methane oxidation.
Fig. 2: Oxygenate selectivity as a function of methane conversion.
Fig. 3: STEM high-angle annular dark-field images of 0.5 wt% Au-ZSM-5 catalysts.
Fig. 4: Calculated reaction pathways for methane activation by surface O atoms.
Fig. 5: Yield of products as a function of time.
Fig. 6: Schematic illustration of the proposed surface catalysed reactions.

Data availability

All data used in this publication are available free of charge from Cardiff University via or available from the authors upon reasonable request. Source data are provided with this paper.


  1. Hammer, G. et al. Natural Gas in Ullmann’s Encyclopaedia of Industrial Chemistry (Wiley-VCH, 2012).

    Google Scholar 

  2. Gesser, H. D., Hunter, N. R. & Prakash, C. B. The direct conversion of methane to methanol by controlled oxidation. Chem. Rev. 85, 235–244 (1985).

    Article  CAS  Google Scholar 

  3. Conley, B. L. et al. Design and study of homogenous catalysts for the selective, low temperature oxidation of hydrocarbons. J. Mol. Cat. A Chem. 251, 8–23 (2006).

    Article  CAS  Google Scholar 

  4. Hargreaves, J. S. J., Hutchings, G. J. & Joyner, R. W. Control of product selectivity in the partial oxidation of methane. Nature 348, 428–429 (1990).

    Article  CAS  Google Scholar 

  5. Periana, R. A. et al. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259, 340–343 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Periana, R. A. et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280, 560–564 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Sobolev, V. I., Dubkov, K. A., Panna, O. V. & Panov, G. I. Selective oxidation of methane to methanol on a FeZSM-5 surface. Catal. Today 24, 251–252 (1995).

    Article  CAS  Google Scholar 

  8. Starokon, E. V. et al. Oxidation of methane to methanol on the surface of FeZSM-5 zeolite. J. Catal. 300, 47–54 (2013).

    Article  CAS  Google Scholar 

  9. Starokon, E. V., Parfenov, M. V., Pirutko, L. V., Abornev, S. I. & Panov, G. I. Room-temperature oxidation of methane by α-oxygen and extraction of products from the FeZSM-5 surface. J. Phys. Chem. C 115, 2155–2161 (2011).

    Article  CAS  Google Scholar 

  10. Parfenov, M. V., Starokon, E. V., Pirutko, L. V. & Panov, G. I. Quasicatalytic and catalytic oxidation of methane to methanol by nitrous oxide over FeZSM-5 zeolite. J. Catal. 318, 14–21 (2014).

    Article  CAS  Google Scholar 

  11. Hammond, C. et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew. Chem. Int. Ed. 51, 5129–5133 (2012).

    Article  CAS  Google Scholar 

  12. Yu, T. et al. Highly selective oxidation of methane into methanol over Cu-promoted monomeric Fe/ZSM-5. ACS Catal. 11, 6684–6691 (2021).

    Article  CAS  Google Scholar 

  13. Narsimhan, K. et al. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction. J. Am. Chem. Soc. 137, 1825–1832 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Tang, Y. et al. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nat. Commun. 9, 1231 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jin, Z. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367, 193–197 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Agarwal, N. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Groothaert, M. H., Smeets, P. J., Sels, B. F., Jacobs, P. A. & Schoonheydt, R. A. Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 127, 1394–1395 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Patrick, T. et al. Isothermal cyclic conversion of methane into methanol over copper-exchanged zeolite at low temperature. Angew. Chem. Int. Ed. 55, 5467–5471 (2016).

    Article  Google Scholar 

  20. Grundner, S. et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6, 7546 (2015).

    Article  PubMed  Google Scholar 

  21. Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Narsimhan, K., Iyoki, K., Dinh, K. & Román-Leshkov, Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2, 424–429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dinh, K. T. et al. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites. J. Am. Chem. Soc. 141, 11641–11650 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Koishybay, A. & Shantz, D. F. Water is the oxygen source for methanol produced in partial oxidation of methane in a flow reactor over Cu-SSZ-13. J. Am. Chem. Soc. 142, 11962–11966 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Sarv, P. et al. Mobility of the acidic proton in Brønsted sites of H-Y, H-mordenite, and H-ZSM-5 zeolites, studied by high-temperature 1H MAS NMR. J. Phys. Chem. 99, 13763–13768 (1995).

    Article  CAS  Google Scholar 

  26. Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P. & Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1335 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. He, Q. et al. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. Nat. Commun. 7, 12905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jin, R. et al. Low temperature oxidation of ethane to oxygenates by oxygen over iridium-cluster catalysts. J. Am. Chem. Soc. 141, 18921–18925 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Gouget, A. et al. Increased dispersion of supported gold during methanol carbonylation. J. Am. Chem. Soc. 131, 6973–6975 (2009).

    Article  Google Scholar 

  30. Denisov, E. T. & Shestakov, A. F. Reactions of alkoxy and peroxy radicals with carbon monoxide. Kinet. Catal. 49, 1–10 (2008).

    Article  CAS  Google Scholar 

  31. Boronat, M., Concepción, P. & Corma, A. Unravelling the nature of gold surface sites by combining IR spectroscopy and DFT calculations. Implications in catalysis. J. Phys. Chem. C 113, 16772–16784 (2009).

    Article  CAS  Google Scholar 

  32. Liu, Z.-P., Hu, P. & Alavi, A. Catalytic role of gold in gold-based catalysts: a density functional theory study on the CO oxidation on gold. J. Am. Chem. Soc. 124, 14770–14779 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Cooper, C. M. & Wiezevich, P. J. Effects of temperature and pressure on the upper explosive limit of methane-oxygen mixtures. Ind. Eng. Chem. 21, 1210–1214 (1929).

    Article  CAS  Google Scholar 

  34. Liu, M. et al. Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J. Magn. Reson. 132, 125–129 (1998).

    Article  CAS  Google Scholar 

  35. Sarradin, P.-M. & Caprais, J.-C. Analysis of dissolved gases by headspace sampling gas chromatography with column and detector switching. Preliminary results. Anal. Commun. 33, 371–373 (1996).

    Article  CAS  Google Scholar 

  36. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  37. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  38. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  39. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  40. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  41. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  42. Mills, G., Jónsson, H. & Schenter, G. K. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 324, 305–337 (1995).

    Article  CAS  Google Scholar 

  43. Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  PubMed  Google Scholar 

  44. Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).

    Article  CAS  Google Scholar 

  45. Kästner, J. & Sherwood, P. Superlinearly converging dimer method for transition state search. J. Chem. Phys. 128, 014106 (2008).

    Article  PubMed  Google Scholar 

  46. Thetford, A., Hutchings, G. J., Taylor, S. H. & Willock, D. J. The decomposition of H2O2 over the components of Au/TiO2 catalysts. Proc. R. Soc. Math. Phys. Eng. Sci. 467, 1885–1899 (2011).

    CAS  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (grants U1932218, 21872170, 21733013 and 22061130202), as part of the Key projects of international partnership plan for foreign cooperation programme (112942KYSB20180009). J.X. thanks the Royal Society and the Newton Fund for Royal Society—Newton Advanced Fellowship. G.J.H. acknowledges the support from the Chinese Academy of Sciences President’s International Fellowship Initiative (grant no. 2019DM0015). Q.H. thanks the National Research Foundation Singapore for support under its NRF Fellowship (NRF-NRFF11-2019-0002). We thank Cardiff University and the Max Planck Centre for Fundamental Heterogeneous Catalysis (FUNCAT) for financial support. G.J.H., D.J.W. and C.R.A.C. thank the Engineering and Physical Sciences Research Council for funding this work (grant reference codes EP/P033695/1 and EP/L027240/1). Via our membership of the United Kingdom’s HEC Materials Chemistry Consortium, which is funded by the Engineering and Physical Sciences Research Council (EP/L000202 and EP/R029431), this work used the ARCHER UK National Supercomputing Service ( and the UK Materials and Molecular Modelling Hub, which is partially funded by the Engineering and Physical Sciences Research Council (EP/P020194), for computational resources.

Author information

Authors and Affiliations



J.X. and G.J.H. conceived the research idea and organized the research programmes. G.Q. and R.J.L. prepared catalyst samples; G.Q., X.Z. and F.D. performed the catalytic experiments and NMR analysis; T.E.D., Q.H. and A.G.R.H. obtained electron microscopy data under the direction of C.J.K.; D.J.W., A.N., M.A.S. and M.Q. carried out most of the computational chemistry calculations. D.B. and M.J.H. provided mechanistic interpretation of results along with C.R.A.C. and D.J.W., who integrated experimental and computational insights. B.A.M. and B.H. provided advice on the industrial context of the work. J.X., G.J.H. and D.J.W. wrote the paper, and all authors discussed the results and the various revisions of the manuscript. J.X. and G.J.H. contributed equally to this work.

Corresponding authors

Correspondence to Jun Xu or Graham J. Hutchings.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Tables 1–15, Notes 1 and 2 and references.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, G., Davies, T.E., Nasrallah, A. et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nat Catal 5, 45–54 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing