Electrocatalytic conversion of CO2 into useful products can contribute to the Paris goals on the basis of abundant low-carbon power and technological advances. From R&D to policy, areas are highlighted in which coordinated efforts can support commercialization of such capture and catalytic technologies while deploying the required infrastructure.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Hierarchical micro/nanostructured silver hollow fiber boosts electroreduction of carbon dioxide
Nature Communications Open Access 02 June 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
McCollum, D. L. et al. Nat. Energy 3, 589–599 (2018).
CCUS in Clean Energy Transitions (IEA, 2020).
Peters, G. P. et al. Nat. Clim. Change 7, 118–122 (2017).
Morrie, J., Kheshgi, H., Paltsev, S. & Herzog, H. Clim. Change Econ. 12, 2150001 (2020).
Bushuyev, O. S. et al. Joule 2, 825–832 (2018).
De Luna, P. et al. Science 364, eaav3506 (2019).
Wang, Y. et al. Nano Lett. 19, 8461–8468 (2019).
Jouny, M., Luc, W. & Jiao, F. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).
Fan, L. et al. Sci. Adv. 6, eaay3111 (2020).
Gallagher, K. S., Grübler, A., Kuhl, L., Nemet, G. & Wilson, C. Annu. Rev. Environ. Resour. 37, 137–162 (2012).
Chan, G., Goldstein, A. P., Bin-Nun, A., Anadon, L. D. & Narayanamurti, V. Nat. Energy 555, 25–27 (2017).
Ponnurangam, S., Chernyshova, I. V. & Somasundaran, P. Adv. Colloid Interface Sci. 244, 184–198 (2017).
Li, C. W. & Kanan, M. W. J. Am. Chem. Soc. 134, 7231–7234 (2012).
Raciti, D., Livi, K. J. & Wang, C. Nano Lett. 15, 6829–6835 (2015).
De Luna, P. et al. Nat. Catal. 1, 103–110 (2018).
Jiang, K. et al. Nat. Catal. 1, 111–119 (2018).
Mistry, H. et al. Nat. Commun. 7, 1–9, 12123 (2016).
Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Nat. Commun. 5, 1–8, 4948 (2014).
Xiao, H., Cheng, T., Goddard, W. A. III & Sundararaman, R. J. Am. Chem. Soc. 138, 483–486 (2016).
Dinh, C. et al. Science 360, 783–787 (2018).
Rabinowitz, J. A. & Kanan, M. W. Nat. Commun. 11, 1–3, 5231 (2020).
Rosen, B. A. et al. Science 334, 643–644 (2011).
Schouten, K. J. P., Qin, Z., Pérez Gallent, E. & Koper, M. T. J. Am. Chem. Soc. 134, 9864–9867 (2012).
Ma, S. et al. J. Am. Chem. Soc. 139, 47–50 (2017).
Jouny, M., Luc, W. & Jiao, F. Nat. Catal. 1, 748–755 (2018).
Raciti, D. & Wang, C. Nat. Catal. 1, 741–742 (2018).
Li, J. et al. Nat. Catal. 2, 1124–1131 (2019).
Mistry, H. et al. J. Am. Chem. Soc. 136, 16473–16476 (2014).
Morales-Guio, C. G. et al. Nat. Catal. 1, 764–771 (2018).
Mezzavilla, S., Horch, S., Stephens, I. E., Seger, B. & Chorkendorff, I. Angew. Chem. Int. Ed. 58, 3774–3778 (2019).
Lu, Q. et al. Nat. Commun. 5, 1–6, 3242 (2014).
Zheng, T. et al. Joule 3, 265–278 (2019).
Wang, Y. et al. Chem. Rev. 120, 12217–12314 (2020).
Calle‐Vallejo, F. & Koper, M. T. Angew. Chem. Int. Ed. 125, 7423–7426 (2013).
Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. J. Phys. Chem. Lett. 6, 2032–2037 (2015).
Cheng, T., Xiao, H. & Goddard, W. A. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).
Garza, A. J., Bell, A. T. & Head-Gordon, M. ACS Catal. 8, 1490–1499 (2018).
Pang, Y. et al. Nat. Catal. 2, 251–258 (2019).
Jouny, M., Hutchings, G. S. & Jiao, F. Nat. Catal. 2, 1062–1070 (2019).
Somoza-Tornos, A., Guerra, O. J., Crow, A. M., Smith, W. A. & Hodge, B. iScience 24,102813 (2021).
Oxalic acid from CO2 using Electrochemistry At demonstratioN scale (Ocean, 2021); https://www.spire2030.eu/ocean
Global Status of CCS Report 2020 (Global CCS Institute, 2020).
Kittner, N., Lill, F. & Kammen, D. M. Nat. Energy 2,17125 (2017).
Haszeldine, R. S., Flude, S., Johnson, G. & Scott, V. Phil. Trans. R. Soc. A 376, 20160447 (2018).
Aldaco, R. et al. Sci. Total Environ. 663, 738–753 (2019).
Chatterjee, S. & Huang, K. Nat. Commun. 11, 1–3, 3287 (2020).
Rumayor, M., Dominguez-Ramos, A., Perez, P. & Irabien, A. J. CO2 Util. 34, 490–499 (2019).
Ramdin, M. et al. Ind. Eng. Chem. Res. 58, 22718–22740 (2019).
Orella, M. J., Brown, S. M., Leonard, M. E., Román-Leshkov, Y. & Brushett, F. R. Energy Technol. 8, 1900994 (2020).
Kibria, M. G. et al. Adv Mater 31, 1807166 (2019).
Spurgeon, J. M. & Kumar, B. Energy Environ. Sci. 11, 1536–1551 (2018).
Herron, J. A. & Maravelias, C. T. Energy Technol. 4, 1369–1391 (2016).
Agarwal, A. S., Zhai, Y., Hill, D. & Sridhar, N. ChemSusChem 4, 1301–1310 (2011).
Wang, X. et al. Nat. Energy 5, 478–486 (2020).
Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Nature 575, 639–642 (2019).
Zhang, X. et al. Nat. Energy 5, 684–692 (2020).
Li, F. et al. Nature 577, 509–513 (2020).
Grim, R. G. et al. Energy Environ. Sci. 13, 472–494 (2020).
Persons, T. M. & Mackin, M. Technology Readiness Assessment Guide: Best Practices for Evaluating the Readiness of Technology for Use in Acquisition Programs and Projects (U.S. Government Accountability Office, 2020); https://www.gao.gov/products/gao-20-48g
Climate Watch 2020 NDC Tracker (World Resources Institute, 2020).
Energy Technology RD&D Budgets: Overview (IEA, 2021); https://www.iea.org/reports/energy-technology-rdd-budgets-2020.
Hernandez, R. R., Jordaan, S. M., Kaldunski, B. & Kumar, N. Front. Sustain. 1, 583090 (2020).
Acknowledgements
E. Sperring, an undergraduate student in environmental engineering at the Johns Hopkins University, provided research assistance to S.M.J. The authors acknowledge the support by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Bioenergy Technologies Office (BETO), BioEnergy Engineering for Products Synthesis (BEEPS) program (DE-EE0008501).
Author information
Authors and Affiliations
Contributions
S.M.J. conceptualized the paper, collected and analysed the data, led the writing of the paper and created figures. C.W. co-wrote the paper and created the first figure.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Catalysis thanks Christopher Hill and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Rights and permissions
About this article
Cite this article
Jordaan, S.M., Wang, C. Electrocatalytic conversion of carbon dioxide for the Paris goals. Nat Catal 4, 915–920 (2021). https://doi.org/10.1038/s41929-021-00704-z
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41929-021-00704-z
This article is cited by
-
Enhanced electroreduction of CO2 to C2+ fuels by the synergetic effect of polyaniline/CuO nanosheets hybrids
Nano Research (2023)
-
Carbon-efficient carbon dioxide electrolysers
Nature Sustainability (2022)
-
Exploration of the bio-analogous asymmetric C–C coupling mechanism in tandem CO2 electroreduction
Nature Catalysis (2022)
-
Hierarchical micro/nanostructured silver hollow fiber boosts electroreduction of carbon dioxide
Nature Communications (2022)
-
Carbon dioxide electroreduction into formic acid and ethylene: a review
Environmental Chemistry Letters (2022)