Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Electrocatalytic conversion of carbon dioxide for the Paris goals

Electrocatalytic conversion of CO2 into useful products can contribute to the Paris goals on the basis of abundant low-carbon power and technological advances. From R&D to policy, areas are highlighted in which coordinated efforts can support commercialization of such capture and catalytic technologies while deploying the required infrastructure.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A process towards more sustainable chemicals and supplies.
Fig. 2: Reported commitments to CCUS in NDCs communicated for the Paris Agreement.
Fig. 3: A systems-level innovation roadmap for electrocatalysis of CO2 for the Paris goals.

References

  1. McCollum, D. L. et al. Nat. Energy 3, 589–599 (2018).

    Article  Google Scholar 

  2. CCUS in Clean Energy Transitions (IEA, 2020).

  3. Peters, G. P. et al. Nat. Clim. Change 7, 118–122 (2017).

    Article  Google Scholar 

  4. Morrie, J., Kheshgi, H., Paltsev, S. & Herzog, H. Clim. Change Econ. 12, 2150001 (2020).

    Article  Google Scholar 

  5. Bushuyev, O. S. et al. Joule 2, 825–832 (2018).

    Article  CAS  Google Scholar 

  6. De Luna, P. et al. Science 364, eaav3506 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Y. et al. Nano Lett. 19, 8461–8468 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Jouny, M., Luc, W. & Jiao, F. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  9. Fan, L. et al. Sci. Adv. 6, eaay3111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gallagher, K. S., Grübler, A., Kuhl, L., Nemet, G. & Wilson, C. Annu. Rev. Environ. Resour. 37, 137–162 (2012).

    Article  Google Scholar 

  11. Chan, G., Goldstein, A. P., Bin-Nun, A., Anadon, L. D. & Narayanamurti, V. Nat. Energy 555, 25–27 (2017).

    Google Scholar 

  12. Ponnurangam, S., Chernyshova, I. V. & Somasundaran, P. Adv. Colloid Interface Sci. 244, 184–198 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Li, C. W. & Kanan, M. W. J. Am. Chem. Soc. 134, 7231–7234 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Raciti, D., Livi, K. J. & Wang, C. Nano Lett. 15, 6829–6835 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. De Luna, P. et al. Nat. Catal. 1, 103–110 (2018).

    Article  Google Scholar 

  16. Jiang, K. et al. Nat. Catal. 1, 111–119 (2018).

    Article  CAS  Google Scholar 

  17. Mistry, H. et al. Nat. Commun. 7, 1–9, 12123 (2016).

  18. Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Nat. Commun. 5, 1–8, 4948 (2014).

  19. Xiao, H., Cheng, T., Goddard, W. A. III & Sundararaman, R. J. Am. Chem. Soc. 138, 483–486 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Dinh, C. et al. Science 360, 783–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Rabinowitz, J. A. & Kanan, M. W. Nat. Commun. 11, 1–3, 5231 (2020).

  22. Rosen, B. A. et al. Science 334, 643–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Schouten, K. J. P., Qin, Z., Pérez Gallent, E. & Koper, M. T. J. Am. Chem. Soc. 134, 9864–9867 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Ma, S. et al. J. Am. Chem. Soc. 139, 47–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Jouny, M., Luc, W. & Jiao, F. Nat. Catal. 1, 748–755 (2018).

    Article  CAS  Google Scholar 

  26. Raciti, D. & Wang, C. Nat. Catal. 1, 741–742 (2018).

    Article  CAS  Google Scholar 

  27. Li, J. et al. Nat. Catal. 2, 1124–1131 (2019).

    Article  CAS  Google Scholar 

  28. Mistry, H. et al. J. Am. Chem. Soc. 136, 16473–16476 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Morales-Guio, C. G. et al. Nat. Catal. 1, 764–771 (2018).

    Article  CAS  Google Scholar 

  30. Mezzavilla, S., Horch, S., Stephens, I. E., Seger, B. & Chorkendorff, I. Angew. Chem. Int. Ed. 58, 3774–3778 (2019).

    Article  CAS  Google Scholar 

  31. Lu, Q. et al. Nat. Commun. 5, 1–6, 3242 (2014).

  32. Zheng, T. et al. Joule 3, 265–278 (2019).

    Article  CAS  Google Scholar 

  33. Wang, Y. et al. Chem. Rev. 120, 12217–12314 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Calle‐Vallejo, F. & Koper, M. T. Angew. Chem. Int. Ed. 125, 7423–7426 (2013).

    Article  Google Scholar 

  35. Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Cheng, T., Xiao, H. & Goddard, W. A. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garza, A. J., Bell, A. T. & Head-Gordon, M. ACS Catal. 8, 1490–1499 (2018).

    Article  CAS  Google Scholar 

  38. Pang, Y. et al. Nat. Catal. 2, 251–258 (2019).

    Article  CAS  Google Scholar 

  39. Jouny, M., Hutchings, G. S. & Jiao, F. Nat. Catal. 2, 1062–1070 (2019).

    Article  CAS  Google Scholar 

  40. Somoza-Tornos, A., Guerra, O. J., Crow, A. M., Smith, W. A. & Hodge, B. iScience 24,102813 (2021).

  41. Oxalic acid from CO2 using Electrochemistry At demonstratioN scale (Ocean, 2021); https://www.spire2030.eu/ocean

  42. Global Status of CCS Report 2020 (Global CCS Institute, 2020).

  43. Kittner, N., Lill, F. & Kammen, D. M. Nat. Energy 2,17125 (2017).

  44. Haszeldine, R. S., Flude, S., Johnson, G. & Scott, V. Phil. Trans. R. Soc. A 376, 20160447 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Aldaco, R. et al. Sci. Total Environ. 663, 738–753 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Chatterjee, S. & Huang, K. Nat. Commun. 11, 1–3, 3287 (2020).

  47. Rumayor, M., Dominguez-Ramos, A., Perez, P. & Irabien, A. J. CO2 Util. 34, 490–499 (2019).

    Article  CAS  Google Scholar 

  48. Ramdin, M. et al. Ind. Eng. Chem. Res. 58, 22718–22740 (2019).

    Article  CAS  Google Scholar 

  49. Orella, M. J., Brown, S. M., Leonard, M. E., Román-Leshkov, Y. & Brushett, F. R. Energy Technol. 8, 1900994 (2020).

    Article  Google Scholar 

  50. Kibria, M. G. et al. Adv Mater 31, 1807166 (2019).

    Article  Google Scholar 

  51. Spurgeon, J. M. & Kumar, B. Energy Environ. Sci. 11, 1536–1551 (2018).

    Article  CAS  Google Scholar 

  52. Herron, J. A. & Maravelias, C. T. Energy Technol. 4, 1369–1391 (2016).

    Article  CAS  Google Scholar 

  53. Agarwal, A. S., Zhai, Y., Hill, D. & Sridhar, N. ChemSusChem 4, 1301–1310 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, X. et al. Nat. Energy 5, 478–486 (2020).

    Article  CAS  Google Scholar 

  55. Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Nature 575, 639–642 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, X. et al. Nat. Energy 5, 684–692 (2020).

    Article  CAS  Google Scholar 

  57. Li, F. et al. Nature 577, 509–513 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Grim, R. G. et al. Energy Environ. Sci. 13, 472–494 (2020).

    Article  CAS  Google Scholar 

  59. Persons, T. M. & Mackin, M. Technology Readiness Assessment Guide: Best Practices for Evaluating the Readiness of Technology for Use in Acquisition Programs and Projects (U.S. Government Accountability Office, 2020); https://www.gao.gov/products/gao-20-48g

  60. Climate Watch 2020 NDC Tracker (World Resources Institute, 2020).

  61. Energy Technology RD&D Budgets: Overview (IEA, 2021); https://www.iea.org/reports/energy-technology-rdd-budgets-2020.

  62. Hernandez, R. R., Jordaan, S. M., Kaldunski, B. & Kumar, N. Front. Sustain. 1, 583090 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

E. Sperring, an undergraduate student in environmental engineering at the Johns Hopkins University, provided research assistance to S.M.J. The authors acknowledge the support by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Bioenergy Technologies Office (BETO), BioEnergy Engineering for Products Synthesis (BEEPS) program (DE-EE0008501).

Author information

Authors and Affiliations

Authors

Contributions

S.M.J. conceptualized the paper, collected and analysed the data, led the writing of the paper and created figures. C.W. co-wrote the paper and created the first figure.

Corresponding author

Correspondence to Sarah M. Jordaan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Christopher Hill and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jordaan, S.M., Wang, C. Electrocatalytic conversion of carbon dioxide for the Paris goals. Nat Catal 4, 915–920 (2021). https://doi.org/10.1038/s41929-021-00704-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00704-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing