Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrocatalytic conversion of carbon dioxide for the Paris goals

Electrocatalytic conversion of CO2 into useful products can contribute to the Paris goals on the basis of abundant low-carbon power and technological advances. From R&D to policy, areas are highlighted in which coordinated efforts can support commercialization of such capture and catalytic technologies while deploying the required infrastructure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A process towards more sustainable chemicals and supplies.
Fig. 2: Reported commitments to CCUS in NDCs communicated for the Paris Agreement.
Fig. 3: A systems-level innovation roadmap for electrocatalysis of CO2 for the Paris goals.

References

  1. 1.

    McCollum, D. L. et al. Nat. Energy 3, 589–599 (2018).

    Google Scholar 

  2. 2.

    CCUS in Clean Energy Transitions (IEA, 2020).

  3. 3.

    Peters, G. P. et al. Nat. Clim. Change 7, 118–122 (2017).

    Google Scholar 

  4. 4.

    Morrie, J., Kheshgi, H., Paltsev, S. & Herzog, H. Clim. Change Econ. 12, 2150001 (2020).

    Google Scholar 

  5. 5.

    Bushuyev, O. S. et al. Joule 2, 825–832 (2018).

    CAS  Google Scholar 

  6. 6.

    De Luna, P. et al. Science 364, eaav3506 (2019).

    CAS  PubMed  Google Scholar 

  7. 7.

    Wang, Y. et al. Nano Lett. 19, 8461–8468 (2019).

    CAS  PubMed  Google Scholar 

  8. 8.

    Jouny, M., Luc, W. & Jiao, F. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    CAS  Google Scholar 

  9. 9.

    Fan, L. et al. Sci. Adv. 6, eaay3111 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Gallagher, K. S., Grübler, A., Kuhl, L., Nemet, G. & Wilson, C. Annu. Rev. Environ. Resour. 37, 137–162 (2012).

    Google Scholar 

  11. 11.

    Chan, G., Goldstein, A. P., Bin-Nun, A., Anadon, L. D. & Narayanamurti, V. Nat. Energy 555, 25–27 (2017).

    Google Scholar 

  12. 12.

    Ponnurangam, S., Chernyshova, I. V. & Somasundaran, P. Adv. Colloid Interface Sci. 244, 184–198 (2017).

    CAS  PubMed  Google Scholar 

  13. 13.

    Li, C. W. & Kanan, M. W. J. Am. Chem. Soc. 134, 7231–7234 (2012).

    CAS  PubMed  Google Scholar 

  14. 14.

    Raciti, D., Livi, K. J. & Wang, C. Nano Lett. 15, 6829–6835 (2015).

    CAS  PubMed  Google Scholar 

  15. 15.

    De Luna, P. et al. Nat. Catal. 1, 103–110 (2018).

    Google Scholar 

  16. 16.

    Jiang, K. et al. Nat. Catal. 1, 111–119 (2018).

    CAS  Google Scholar 

  17. 17.

    Mistry, H. et al. Nat. Commun. 7, 1–9, 12123 (2016).

  18. 18.

    Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Nat. Commun. 5, 1–8, 4948 (2014).

  19. 19.

    Xiao, H., Cheng, T., Goddard, W. A. III & Sundararaman, R. J. Am. Chem. Soc. 138, 483–486 (2016).

    CAS  PubMed  Google Scholar 

  20. 20.

    Dinh, C. et al. Science 360, 783–787 (2018).

    CAS  PubMed  Google Scholar 

  21. 21.

    Rabinowitz, J. A. & Kanan, M. W. Nat. Commun. 11, 1–3, 5231 (2020).

  22. 22.

    Rosen, B. A. et al. Science 334, 643–644 (2011).

    CAS  PubMed  Google Scholar 

  23. 23.

    Schouten, K. J. P., Qin, Z., Pérez Gallent, E. & Koper, M. T. J. Am. Chem. Soc. 134, 9864–9867 (2012).

    CAS  PubMed  Google Scholar 

  24. 24.

    Ma, S. et al. J. Am. Chem. Soc. 139, 47–50 (2017).

    CAS  PubMed  Google Scholar 

  25. 25.

    Jouny, M., Luc, W. & Jiao, F. Nat. Catal. 1, 748–755 (2018).

    CAS  Google Scholar 

  26. 26.

    Raciti, D. & Wang, C. Nat. Catal. 1, 741–742 (2018).

    CAS  Google Scholar 

  27. 27.

    Li, J. et al. Nat. Catal. 2, 1124–1131 (2019).

    CAS  Google Scholar 

  28. 28.

    Mistry, H. et al. J. Am. Chem. Soc. 136, 16473–16476 (2014).

    CAS  PubMed  Google Scholar 

  29. 29.

    Morales-Guio, C. G. et al. Nat. Catal. 1, 764–771 (2018).

    CAS  Google Scholar 

  30. 30.

    Mezzavilla, S., Horch, S., Stephens, I. E., Seger, B. & Chorkendorff, I. Angew. Chem. Int. Ed. 58, 3774–3778 (2019).

    CAS  Google Scholar 

  31. 31.

    Lu, Q. et al. Nat. Commun. 5, 1–6, 3242 (2014).

  32. 32.

    Zheng, T. et al. Joule 3, 265–278 (2019).

    CAS  Google Scholar 

  33. 33.

    Wang, Y. et al. Chem. Rev. 120, 12217–12314 (2020).

    CAS  PubMed  Google Scholar 

  34. 34.

    Calle‐Vallejo, F. & Koper, M. T. Angew. Chem. Int. Ed. 125, 7423–7426 (2013).

    Google Scholar 

  35. 35.

    Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    CAS  PubMed  Google Scholar 

  36. 36.

    Cheng, T., Xiao, H. & Goddard, W. A. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Garza, A. J., Bell, A. T. & Head-Gordon, M. ACS Catal. 8, 1490–1499 (2018).

    CAS  Google Scholar 

  38. 38.

    Pang, Y. et al. Nat. Catal. 2, 251–258 (2019).

    CAS  Google Scholar 

  39. 39.

    Jouny, M., Hutchings, G. S. & Jiao, F. Nat. Catal. 2, 1062–1070 (2019).

    CAS  Google Scholar 

  40. 40.

    Somoza-Tornos, A., Guerra, O. J., Crow, A. M., Smith, W. A. & Hodge, B. iScience 24,102813 (2021).

  41. 41.

    Oxalic acid from CO2 using Electrochemistry At demonstratioN scale (Ocean, 2021); https://www.spire2030.eu/ocean

  42. 42.

    Global Status of CCS Report 2020 (Global CCS Institute, 2020).

  43. 43.

    Kittner, N., Lill, F. & Kammen, D. M. Nat. Energy 2,17125 (2017).

  44. 44.

    Haszeldine, R. S., Flude, S., Johnson, G. & Scott, V. Phil. Trans. R. Soc. A 376, 20160447 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Aldaco, R. et al. Sci. Total Environ. 663, 738–753 (2019).

    CAS  PubMed  Google Scholar 

  46. 46.

    Chatterjee, S. & Huang, K. Nat. Commun. 11, 1–3, 3287 (2020).

  47. 47.

    Rumayor, M., Dominguez-Ramos, A., Perez, P. & Irabien, A. J. CO2 Util. 34, 490–499 (2019).

    CAS  Google Scholar 

  48. 48.

    Ramdin, M. et al. Ind. Eng. Chem. Res. 58, 22718–22740 (2019).

    CAS  Google Scholar 

  49. 49.

    Orella, M. J., Brown, S. M., Leonard, M. E., Román-Leshkov, Y. & Brushett, F. R. Energy Technol. 8, 1900994 (2020).

    Google Scholar 

  50. 50.

    Kibria, M. G. et al. Adv Mater 31, 1807166 (2019).

    Google Scholar 

  51. 51.

    Spurgeon, J. M. & Kumar, B. Energy Environ. Sci. 11, 1536–1551 (2018).

    CAS  Google Scholar 

  52. 52.

    Herron, J. A. & Maravelias, C. T. Energy Technol. 4, 1369–1391 (2016).

    CAS  Google Scholar 

  53. 53.

    Agarwal, A. S., Zhai, Y., Hill, D. & Sridhar, N. ChemSusChem 4, 1301–1310 (2011).

    CAS  PubMed  Google Scholar 

  54. 54.

    Wang, X. et al. Nat. Energy 5, 478–486 (2020).

    CAS  Google Scholar 

  55. 55.

    Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Nature 575, 639–642 (2019).

    CAS  PubMed  Google Scholar 

  56. 56.

    Zhang, X. et al. Nat. Energy 5, 684–692 (2020).

    CAS  Google Scholar 

  57. 57.

    Li, F. et al. Nature 577, 509–513 (2020).

    CAS  PubMed  Google Scholar 

  58. 58.

    Grim, R. G. et al. Energy Environ. Sci. 13, 472–494 (2020).

    CAS  Google Scholar 

  59. 59.

    Persons, T. M. & Mackin, M. Technology Readiness Assessment Guide: Best Practices for Evaluating the Readiness of Technology for Use in Acquisition Programs and Projects (U.S. Government Accountability Office, 2020); https://www.gao.gov/products/gao-20-48g

  60. 60.

    Climate Watch 2020 NDC Tracker (World Resources Institute, 2020).

  61. 61.

    Energy Technology RD&D Budgets: Overview (IEA, 2021); https://www.iea.org/reports/energy-technology-rdd-budgets-2020.

  62. 62.

    Hernandez, R. R., Jordaan, S. M., Kaldunski, B. & Kumar, N. Front. Sustain. 1, 583090 (2020).

    Google Scholar 

Download references

Acknowledgements

E. Sperring, an undergraduate student in environmental engineering at the Johns Hopkins University, provided research assistance to S.M.J. The authors acknowledge the support by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Bioenergy Technologies Office (BETO), BioEnergy Engineering for Products Synthesis (BEEPS) program (DE-EE0008501).

Author information

Affiliations

Authors

Contributions

S.M.J. conceptualized the paper, collected and analysed the data, led the writing of the paper and created figures. C.W. co-wrote the paper and created the first figure.

Corresponding author

Correspondence to Sarah M. Jordaan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Christopher Hill and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jordaan, S.M., Wang, C. Electrocatalytic conversion of carbon dioxide for the Paris goals. Nat Catal 4, 915–920 (2021). https://doi.org/10.1038/s41929-021-00704-z

Download citation

Search

Quick links