Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decreasing the catalytic ignition temperature of diesel soot using electrified conductive oxide catalysts

Abstract

Pursuance of low reaction temperatures deserves considerable efforts in regard to catalysis for energy efficiency. Catalytic soot combustion, the prevailing technology for reducing the emission of harmful diesel soot particulates, cannot occur efficiently at <200 °C exhaust temperature during frequent idling. Here, we report an electrification strategy aimed at decreasing the ignition temperature at which 50% of soot (T50) is converted at <75 °C using conductive oxides as catalysts, such as potassium-supported antimony-tin oxides. The performance achieved was far superior to that with conventional thermal catalytic soot combustion—generally with T50 >300 °C. Electrically driven release of lattice oxygen from catalysts is responsible for rapid soot ignition at low temperatures, while the opposite electrostatic fluidization between the conductive catalyst and soot particles accounts for improved catalyst–soot contact efficiency. The electrification process presents a promising strategy in meeting the common dilemma of reduction in vehicle emissions at low exhaust temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EPPO strategy for soot combustion.
Fig. 2: Infrared thermal images of the reactor.
Fig. 3: EPPO performance.
Fig. 4: Electrically driven release of lattice oxygen.
Fig. 5: In situ Raman characterization.
Fig. 6: Ex situ characterizations.
Fig. 7: Electrodynamic fluidization of the K/ATO catalyst.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within the article and its Supplementary information files. Further data are available from the corresponding author on request. Source data are provided with this paper.

References

  1. Frank, B., Schuster, M. E., Schlogl, R. & Su, D. S. Emission of highly activated soot particulate – the other side of the coin with modern diesel engines. Angew. Chem. Int. Ed. Engl. 52, 2673–2677 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Shi, Q. L. et al. Multiple strategies to decrease ignition temperature for soot combustion on ultrathin MnO2-x nanosheet array. Appl. Catal. B 246, 312–321 (2019).

    Article  CAS  Google Scholar 

  3. Ozel, T., Hall, M. J. & Matthews, R. Increasing exhaust temperature of an idling light-duty diesel engine through post-injection and intake throttling. SAE Int. 2018, 2001–0223 (2018).

    Google Scholar 

  4. Zeng, L. R., Cui, L., Wang, C. Y., Guo, W. & Gong, C. R. In-situ modified the surface of Pt-doped perovskite catalyst for soot oxidation. J. Hazard. Mater. 383, 121210 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Xiong, J. et al. Efficiently multifunctional catalysts of 3D ordered meso-macroporous Ce0.3Zr0.7O2-supported PdAu@CeO2 core-shell nanoparticles for soot oxidation: Synergetic effect of Pd-Au-CeO2 ternary components. Appl. Catal. B 251, 247–260 (2019).

    Article  CAS  Google Scholar 

  6. Portillo-Velez, N. S. & Zanella, R. Comparative study of transition metal (Mn, Fe or Co) catalysts supported on titania: effect of Au nanoparticles addition towards CO oxidation and soot combustion reactions. Chem. Eng. J. 385, 123848 (2020).

    Article  CAS  Google Scholar 

  7. Fang, F., Zhao, P., Feng, N., Wan, H. & Guan, G. Surface engineering on porous perovskite-type La0.6Sr0.4CoO3-δ nanotubes for an enhanced performance in diesel soot elimination. J. Hazard. Mater. 399, 123014 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Jin, B. F. et al. SmMn2O5 catalysts modified with silver for soot oxidation: dispersion of silver and distortion of mullite. Appl. Catal. B 273, 119058 (2020).

    Article  CAS  Google Scholar 

  9. Cui, B. et al. Holey Co-Ce oxide nanosheets as a highly efficient catalyst for diesel soot combustion. Appl. Catal. B 267, 118670 (2020).

    Article  CAS  Google Scholar 

  10. Cao, C. M. et al. Diesel soot elimination over potassium-promoted Co3O4 nanowires monolithic catalysts under gravitation contact mode. Appl. Catal. B 218, 32–45 (2017).

    Article  CAS  Google Scholar 

  11. Chen, H., Zhang, Y. X. & Zhang, J. Dipole-moment-driven diesel soot oxidation in the presence of alkali metal chlorides. Catal. Sci. Technol. 8, 970–974 (2018).

    Article  CAS  Google Scholar 

  12. Fang, F. et al. Construction of a hollow structure in La0.9K0.1CoO3-δ nanofibers via grain size control by Sr substitution with an enhanced catalytic performance for soot removal. Catal. Sci. Technol. 9, 4938–4951 (2019).

    Article  CAS  Google Scholar 

  13. Xiong, J. et al. Synergetic effect of K sites and Pt nanoclusters in an ordered hierarchical porous Pt-KMnOx/Ce0.25Zr0.75O2 catalyst for boosting soot oxidation. ACS Catal. 10, 7123–7135 (2020).

    Article  CAS  Google Scholar 

  14. Wei, Y. C. et al. Design and synthesis of 3D ordered macroporous CeO2-supported Pt@CeO2-δ core-shell nanoparticle materials for enhanced catalytic activity of soot oxidation. Small 9, 3957–3963 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Mei, X. L. et al. High-efficient non-noble metal catalysts of 3D ordered macroporous perovskite-type La2NiB’O6 for soot combustion: insight into the synergistic effect of binary Ni and B’ sites. Appl. Catal. B 275, 119108 (2020).

    Article  CAS  Google Scholar 

  16. Ren, W. et al. Identifying oxygen activation/oxidation sites for efficient soot combustion over silver catalysts interacted with nanoflower-like hydrotalcite-derived CoAlO metal oxides. ACS Catal. 9, 8772–8784 (2019).

    Article  CAS  Google Scholar 

  17. Corro, G., Cebada, S., Pal, U. & Fierro, J. L. G. Au0–Au3+ bifunctional site mediated enhanced catalytic activity of Au/ZnO composite in diesel particulate matter oxidation. J. Catal. 347, 148–156 (2017).

    Article  CAS  Google Scholar 

  18. Ji, L. et al. Effects of nonthermal plasma on microstructure and oxidation characteristics of particulate matter. Environ. Sci. Technol. 54, 2510–2519 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Ranji-Burachaloo, H., Masoomi-Godarzi, S., Khodadadi, A. A. & Mortazavi, Y. Synergetic effects of plasma and metal oxide catalysts on diesel soot oxidation. Appl. Catal. B 182, 74–84 (2016).

    Article  CAS  Google Scholar 

  20. Lin, H., Huang, Z. & Shangguan, W. F. Temperature-programmed oxidation of soot in a hybrid catalysis-plasma system. Chem. Eng. Technol. 31, 110–115 (2008).

    Article  CAS  Google Scholar 

  21. Wismann, S. T. et al. Electrified methane reforming: a compact approach to greener industrial hydrogen production. Science 364, 756–759 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Dou, L. G. et al. Enhancing CO2 methanation over a metal foam structured catalyst by electric internal heating. Chem. Commun. 56, 205–208 (2020).

    Article  CAS  Google Scholar 

  23. Zou, N. et al. Electrothermal regeneration by Joule heat effect on carbon cloth based MnO2 catalyst for long-term formaldehyde removal. Chem. Eng. J. 357, 1–10 (2019).

    Article  CAS  Google Scholar 

  24. Wang, K. et al. Energy-efficient catalytic removal of formaldehyde enabled by precisely Joule-heated Ag/Co3O4@mesoporous-carbon monoliths. Carbon 167, 709–717 (2020).

    Article  CAS  Google Scholar 

  25. Zhang, Y. et al. A prototype for catalytic removal of formaldehyde and CO in a compact air cleaner powered by portable electricity. Mater. Adv. 1, 3582–3588 (2020).

    Article  CAS  Google Scholar 

  26. Li, J., Lu, X., Wu, F., Qin, S. & You, Z. Metallic-substrate-supported manganese oxide as Joule-heat-ignition catalytic reactor for removal of carbon monoxide and toluene in air. Chem. Eng. J. 328, 1058–1065 (2017).

    Article  CAS  Google Scholar 

  27. Fino, D., Bensaid, S., Piumetti, M. & Russo, N. A review on the catalytic combustion of soot in diesel particulate filters for automotive applications: from powder catalysts to structured reactors. Appl. Catal. A 509, 75–96 (2016).

    Article  CAS  Google Scholar 

  28. Zhang, Y. et al. Characterization of negative temperature coefficient of resistivity in (Sn1−xTix)0.95Sb0.05O2 (x ≤ 0.1) ceramics. J. Mater. Sci. Mater. Electron. 25, 5552–5559 (2014).

    Article  CAS  Google Scholar 

  29. Zhang, Z., Zhang, Y., Wang, Z. & Gao, X. Catalytic performance and mechanism of potassium-promoted Mg-Al hydrotalcite mixed oxides for soot combustion with O2. J. Catal. 271, 12–21 (2010).

    Article  CAS  Google Scholar 

  30. Aneggi, E. et al. Ceria–zirconia particles wrapped in a 2D carbon envelope: improved low-temperature oxygen transfer and oxidation activity. Angew. Chem. Int. Ed. Engl. 54, 14040–14043 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aneggi, E., Llorca, J., Trovarelli, A., Aouine, M. & Vernoux, P. In situ environmental HRTEM discloses low temperature carbon soot oxidation by ceria–zirconia at the nanoscale. Chem. Commun. 55, 3876–3878 (2019).

    Article  CAS  Google Scholar 

  32. Serve, A., Boreave, A., Cartoixa, B., Pajot, K. & Vernoux, P. Synergy between Ag nanoparticles and yttria-stabilized zirconia for soot oxidation. Appl. Catal. B 242, 140–149 (2019).

    Article  CAS  Google Scholar 

  33. Hajar, Y. M., Boreave, A., Caravaca, A., Vernoux, P. & Baranova, E. A. Isotopic oxygen exchange study to unravel noble metal oxide/support interactions: the case of RuO2 and IrO2 nanoparticles supported on CeO2, TiO2 and YSZ. ChemCatChem 12, 2548–2555 (2020).

    Article  CAS  Google Scholar 

  34. Wang, X. et al. Atomic-scale insights into surface lattice oxygen activation at the spinel/perovskite interface of Co3O4/La0.3Sr0.7CoO3. Angew. Chem. Int. Ed. Engl. 58, 11720–11725 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Yi, D. et al. Regulating charge transfer of lattice oxygen in single-atom-doped titania for hydrogen evolution. Angew. Chem. Int. Ed. Engl. 59, 15855–15859 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, H., Zhang, Y. & Zhang, J. Dipole-moment-driven diesel soot oxidation in the presence of alkali metal chlorides. Catal. Sci. Technol. 8, 970–974 (2018).

    Article  CAS  Google Scholar 

  37. Ramarajan, R., Kovendhan, M., Thangaraju, K., Joseph, D. P. & Babu, R. R. Facile deposition and characterization of large area highly conducting and transparent Sb-doped SnO2 thin film. Appl. Surf. Sci. 487, 1385–1393 (2019).

    Article  CAS  Google Scholar 

  38. Krishnakumar, T. et al. Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. J. Phys. Chem. Solids 70, 993–999 (2009).

    Article  CAS  Google Scholar 

  39. Bueno-López, A., Krishna, K., Makkee, M. & Moulijn, J. A. Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2. J. Catal. 230, 237–248 (2005).

    Article  Google Scholar 

  40. Piumetti, M., Bensaid, S., Russo, N. & Fino, D. Investigations into nanostructured ceria–zirconia catalysts for soot combustion. Appl. Catal. B 180, 271–282 (2016).

    Article  CAS  Google Scholar 

  41. Jelles, S. J., van Setten, B. A. A. L., Makkee, M. & Moulijn, J. A. Molten salts as promising catalysts for oxidation of diesel soot: importance of experimental conditions in testing procedures. Appl. Catal. B 21, 35–49 (1999).

    Article  CAS  Google Scholar 

  42. Bologa, M. K., Berkov, A. B. & Solomyanchuk, V. L. Heat-transfer processes enhancement and control with electrodynamic fluidization. Exp. Therm. Fluid Sci. 3, 480–486 (1990).

    Article  CAS  Google Scholar 

  43. Bologa, M. K. & Berkov, A. B. Fluidization of electrically conductive particles in an electric force field. J. Eng. Phys. 53, 802–807 (1987).

    Article  Google Scholar 

  44. Higuera, F. J. Analysis of electrodynamic fluidization. J. Fluid Mech. 854, 261–292 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (nos. 22076062, 21876061, 22072170 and 21906063), the Chinese Academy of Sciences (no. QYZDB-SSW-JSC037), the Fujian Institute of Innovation, Chinese Academy of Sciences (no. FJCXY18020202), the LiaoNing Revitalization Talents Program (no. XLYC1802076) and the Key Technology R&D Program of Shandong Province (no. 2019GSF109042).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., J.Z. and Z. Zhang conceived the research and developed experiments. J.Z. and Z. Zhang supervised the work. X.M. conducted all experiments with the help of X.Z. Y.Z. designed the reaction system and developed the corresponding computer software. X.Z. designed the isotopic oxygen exchange tests and built the apparatus. Y.Z., Z. Zhang and X.M. wrote the manuscript. Z. Zhong and Y.X. contributed to revision of the manuscript and data analysis.

Corresponding authors

Correspondence to Yexin Zhang, Zhaoliang Zhang or Jian Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and Tables 1–3.

Supplementary Video 1

Movement of K/ATO particles under an electric field.

Supplementary Video 2

Movement of soot particles under an electric field.

Source data

Source Data Fig. 1

Plot source data.

Source Data Fig. 3

Plot source data.

Source Data Fig. 4

Plot source data.

Source Data Fig. 5

Plot source data.

Source Data Fig. 6

Plot source data.

Source Data Fig. 7

Plot source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, X., Zhu, X., Zhang, Y. et al. Decreasing the catalytic ignition temperature of diesel soot using electrified conductive oxide catalysts. Nat Catal 4, 1002–1011 (2021). https://doi.org/10.1038/s41929-021-00702-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00702-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing