Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Coupling electrochemical CO2 conversion with CO2 capture

An Author Correction to this article was published on 20 January 2022

This article has been updated

Abstract

Electrochemical CO2 conversion into fuels or chemicals and CO2 capture from point or dilute sources are two important processes to address the gigaton challenges in reducing greenhouse gas emissions. Both CO2 capture and electrochemical CO2 conversion are energy intensive, and synergistic coupling between the two processes can improve the energy efficiency of the system and reduce the cost of the reduced products, via eliminating the CO2 transport and storage or eliminating the capture media regeneration and molecular CO2 release. We consider three different levels to couple electrochemical CO2 reduction with CO2 capture: independent (Type-I), subsequent (Type-II) and fully integrated (Type-III) capture and conversion processes. We focus on Type-II and Type-III configurations and illustrate potential coupling routes of different capture media, which include amine-based solutions and direct carbamate reduction, redox active carriers, aqueous carbonate and bicarbonate solutions, ionic liquids CO2 capture and conversion mediated by covalent organic frameworks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Type-I, independent electrochemical CO2R and CO2 capture processes.
Fig. 2: Type-II, subsequent stage electrochemical CO2R and CO2 capture processes.
Fig. 3: Type-III, fully integrated electrochemical CO2R and CO2 capture processes.
Fig. 4: CO2 capture and conversion energetics for Type-I and II (red) and Type-III (green).

Similar content being viewed by others

Change history

References

  1. Jouny, M., Luc, W. & Jiao, F. General techno-Economic Analysis of CO2 Electrolysis Systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  2. García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  PubMed  Google Scholar 

  3. Xu, H. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 5, 623–632 (2020).

    Article  CAS  Google Scholar 

  4. Cavallaro, N. et al. Second State of the Carbon Cycle Report (US Global Change Research Program, 2018); https://doi.org/10.7930/SOCCR2.2018

  5. McLaren, D. A comparative global assessment of potential negative emissions technologies. Process Saf. Environ. Prot. 90, 489–500 (2012).

    Article  CAS  Google Scholar 

  6. Fridahl, M., Hansson, A. & Haikola, S. Towards indicators for a negative emissions climate stabilisation index: problems and prospects. Climate 8, 75 (2020).

    Article  Google Scholar 

  7. National Academies of Sciences, Engineering, and Medicine Negative Emissions Technologies and Reliable Sequestration. Negative Emissions Technologies and Reliable Sequestration (National Academies, 2019); https://doi.org/10.17226/25259

  8. Mac Dowell, N., Fennell, P. S., Shah, N. & Maitland, G. C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Chang. 7, 243–249 (2017).

    Article  Google Scholar 

  9. Bettenhausen, C. The life-or-death race to improve carbon capture. Chem. Eng. News 99, 28–35 (2021).

    Article  Google Scholar 

  10. Dutcher, B., Fan, M. & Russell, A. G. Amine-based CO2 capture technology development from the beginning of 2013—a review. ACS Appl. Mater. Interfaces 7, 2137–2148 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Sharifian, R., Wagterveld, R. M., Digdaya, I. A., Xiang, C. & Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 14, 781–814 (2021).

    Article  CAS  Google Scholar 

  12. Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).

    Article  CAS  Google Scholar 

  13. Skydsgaard, N. & Evans, D. World’s largest plant capturing carbon from air starts in Iceland. Reuters (13 September 2021); https://www.reuters.com/business/environment/worlds-largest-plant-capturing-carbon-air-starts-iceland-2021-09-08/

  14. Digdaya, I. A. et al. A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater. Nat. Commun. 11, 4412 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eisaman, M. D. et al. CO2 extraction from seawater using bipolar membrane electrodialysis. Energy Environ. Sci. 5, 7346–7352 (2012).

    Article  CAS  Google Scholar 

  16. Endrödi, B. et al. Multilayer electrolyzer stack converts carbon dioxide to gas products at high pressure with high efficiency. ACS Energy Lett. 4, 1770–1777 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sánchez, O. G. et al. Recent advances in industrial CO2 electroreduction. Curr. Opin. Green. Sustain. Chem. 16, 47–56 (2019).

    Article  Google Scholar 

  18. Stern, M. C., Simeon, F., Herzog, H. & Hatton, T. A. Post-combustion carbon dioxide capture using electrochemically mediated amine regeneration. Energy Environ. Sci. 6, 2505–2517 (2013).

    Article  CAS  Google Scholar 

  19. Stern, M. C. & Alan Hatton, T. Bench-scale demonstration of CO2 capture with electrochemically-mediated amine regeneration. RSC Adv. 4, 5906–5914 (2014).

    Article  CAS  Google Scholar 

  20. Gurkan, B., Simeon, F. & Hatton, T. A. Quinone reduction in ionic liquids for electrochemical CO2 separation. ACS Sustain. Chem. Eng. 3, 1394–1405 (2015).

    Article  CAS  Google Scholar 

  21. Apaydin, D. H., Głowacki, E. D., Portenkirchner, E. & Sariciftci, N. S. Direct electrochemical capture and release of carbon dioxide using an industrial organic pigment: quinacridone. Angew. Chem. Int. Ed. 53, 6819–6822 (2014).

    Article  CAS  Google Scholar 

  22. Singh, P. et al. Electrochemical capture and release of carbon dioxide using a disulfide–thiocarbonate redox cycle. J. Am. Chem. Soc. 139, 1033–1036 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Nagasawa, H., Yamasaki, A., Iizuka, A., Kumagai, K. & Yanagisawa, Y. A new recovery process of carbon dioxide from alkaline carbonate solution via electrodialysis. AIChE J. 55, 3286–3293 (2009).

    Article  CAS  Google Scholar 

  24. Watkins, J. D. et al. Redox-mediated separation of carbon dioxide from flue gas. Energy Fuels 29, 7508–7515 (2015).

    Article  CAS  Google Scholar 

  25. Renfrew, S. E., Starr, D. E. & Strasser, P. Electrochemical approaches toward CO2 capture and concentration. ACS Catal. 10, 13058–13074 (2020).

    Article  CAS  Google Scholar 

  26. Kang, J. S., Kim, S. & Hatton, T. A. Redox-responsive sorbents and mediators for electrochemically based CO2 capture. Curr. Opin. Green Sustain. Chem. 31, 100504 (2021).

    Article  Google Scholar 

  27. Rheinhardt, J. H., Singh, P., Tarakeshwar, P. & Buttry, D. A. Electrochemical capture and release of carbon dioxide. ACS Energy Lett. 2, 454–461 (2017).

    Article  CAS  Google Scholar 

  28. Khurram, A., Yan, L., Yin, Y., Zhao, L. & Gallant, B. M. Promoting amine-activated electrochemical CO2 conversion with alkali salts. J. Phys. Chem. C 123, 18222–18231 (2019).

    Article  CAS  Google Scholar 

  29. Chen, L. et al. Electrochemical reduction of carbon dioxide in a monoethanolamine capture medium. ChemSusChem 10, 4109–4118 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Filotás, D., Nagy, T., Nagy, L., Mizsey, P. & Nagy, G. Extended investigation of electrochemical CO2 reduction in ethanolamine solutions by SECM. Electroanalysis 30, 690–697 (2018).

    Article  Google Scholar 

  31. Bhattacharya, M., Sebghati, S., Vercella, Y. M. & Saouma, C. T. Electrochemical reduction of carbamates and carbamic acids: implications for combined carbon capture and electrochemical CO2 recycling. J. Electrochem. Soc. 167, 086507 (2020).

    Article  CAS  Google Scholar 

  32. Bhattacharya, M., Sebghati, S., Vanderlinden, R. T. & Saouma, C. T. Toward combined carbon capture and recycling: addition of an amine alters product selectivity from CO to formic acid in manganese catalyzed reduction of CO2. J. Am. Chem. Soc. 142, 17589–17597 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Margarit, C. G., Asimow, N. G., Costentin, C. & Nocera, D. G. Tertiary amine-assisted electroreduction of carbon dioxide to formate catalyzed by iron tetraphenylporphyrin. ACS Energy Lett. 5, 72–78 (2020).

    Article  CAS  Google Scholar 

  34. Abdinejad, M., Mirza, Z., Zhang, X. A. & Kraatz, H. B. Enhanced electrocatalytic activity of primary amines for CO2 reduction using copper electrodes in aqueous solution. ACS Sustain. Chem. Eng. 8, 1715–1720 (2020).

    Article  CAS  Google Scholar 

  35. Hossain, M. N., Ahmad, S., da Silva, I. S. & Kraatz, H. B. Electrochemical reduction of CO2 at coinage metal nanodendrites in aqueous ethanolamine. Chem. Eur. J. 27, 1346–1355 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Li, Y. C. et al. CO2 electroreduction from carbonate electrolyte. ACS Energy Lett. 4, 1427–1431 (2019).

    Article  CAS  Google Scholar 

  37. Li, T. et al. Electrolytic conversion of bicarbonate into CO in a flow cell. Joule 3, 1487–1497 (2019).

    Article  CAS  Google Scholar 

  38. Rosen, B. A. et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, H. et al. Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2. Chem 4, 1696–1709 (2018).

    Article  CAS  Google Scholar 

  40. Legrand, L., Shu, Q., Tedesco, M., Dykstra, J. E. & Hamelers, H. V. M. Role of ion exchange membranes and capacitive electrodes in membrane capacitive deionization (MCDI) for CO2 capture. J. Colloid Interface Sci. 564, 478–490 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Y., Ye, H.-Z., Diederichsen, K. M., Van Voorhis, T. & Hatton, T. A. Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nat. Commun. 11, 2278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin, Y.-J., Chen, E. & Rochelle, G. T. Pilot plant test of the advanced flash stripper for CO2 capture. Faraday Discuss. 192, 37–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Jens, C. M., Müller, L., Leonhard, K. & Bardow, A. To integrate or not to integrate—techno-economic and life cycle assessment of CO2 capture and conversion to methyl formate using methanol. ACS Sustain. Chem. Eng. 7, 12270–12280 (2019).

    CAS  Google Scholar 

  44. Lee, G. et al. Electrochemical upgrade of CO2 from amine capture solution. Nat. Energy 6, 46–53 (2021).

    Article  CAS  Google Scholar 

  45. Hori, Y. & Suzuki, S. Electrolytic reduction of bicarbonate ion at a mercury electrode. J. Electrochem. Soc. 130, 2387–2390 (1983).

    Article  CAS  Google Scholar 

  46. Aghaie, M., Rezaei, N. & Zendehboudi, S. A systematic review on CO2 capture with ionic liquids: current status and future prospects. Renew. Sustain. Energy Rev. 96, 502–525 (2018).

    Article  CAS  Google Scholar 

  47. Park, Y., Lin, K.-Y. A., Park, A.-H. A. & Petit, C. Recent advances in anhydrous solvents for CO2 capture: ionic liquids, switchable solvents, and nanoparticle organic hybrid materials. Front. Energy Res. 3, 42 (2015).

    Article  Google Scholar 

  48. Tanner, E. E. L., Batchelor-McAuley, C. & Compton, R. G. Carbon dioxide reduction in room-temperature ionic liquids: the effect of the choice of electrode material, cation, and anion. J. Phys. Chem. C 120, 26442–26447 (2016).

    Article  CAS  Google Scholar 

  49. Feaster, J. T. et al. Understanding the influence of [EMIM]Cl on the suppression of the hydrogen evolution reaction on transition metal electrodes. Langmuir 33, 9464–9471 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Rosen, B. A. et al. In situ spectroscopic examination of a low overpotential pathway for carbon dioxide conversion to carbon monoxide. J. Phys. Chem. C. 116, 15307–15312 (2012).

    Article  CAS  Google Scholar 

  51. Yang, Z. Z., Zhao, Y. N. & He, L. N. CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Adv. 1, 545–567 (2011).

    Article  CAS  Google Scholar 

  52. Bates, E. D., Mayton, R. D., Ntai, I. & Davis, J. H. CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc. 124, 926–927 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Luo, X. et al. Significant improvements in CO2 capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions. Angew. Chem. Int. Ed. 53, 7053–7057 (2014).

    Article  CAS  Google Scholar 

  54. Medina-Ramos, J. et al. Structural dynamics and evolution of bismuth electrodes during electrochemical reduction of CO2 in imidazolium-based ionic liquid solutions. ACS Catal. 7, 7285–7295 (2017).

    Article  CAS  Google Scholar 

  55. Zeng, Y., Zou, R. & Zhao, Y. Covalent organic frameworks for CO2 capture. Adv. Mater. 28, 2855–2873 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Johnson, E. M., Haiges, R. & Marinescu, S. C. Covalent–organic frameworks composed of rhenium bipyridine and metal porphyrins: designing heterobimetallic frameworks with two distinct metal sites. ACS Appl. Mater. Interfaces 10, 37919–37927 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Su, P., Iwase, K., Harada, T., Kamiya, K. & Nakanishi, S. Covalent triazine framework modified with coordinatively-unsaturated Co or Ni atoms for CO2 electrochemical reduction. Chem. Sci. 9, 3941–3947 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, Q. et al. Integration of strong electron transporter tetrathiafulvalene into metalloporphyrin-based covalent organic framework for highly efficient electroreduction of CO2. ACS Appl. Mater. Interfaces 5, 1005–1012 (2020).

    CAS  Google Scholar 

  59. Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Lin, C. Y., Zhang, D., Zhao, Z. & Xia, Z. Covalent organic framework electrocatalysts for clean energy conversion. Adv. Mater. 30, 170364 (2018).

    Article  Google Scholar 

  61. Wang, Y., Chen, J., Wang, G., Li, Y. & Wen, Z. Perfluorinated covalent triazine framework derived hybrids for the highly selective electroconversion of carbon dioxide into methane. Angew. Chem. Int. Ed. 57, 13120–13124 (2018).

    Article  CAS  Google Scholar 

  62. Uribe-Romo, F. J. et al. A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 131, 4570–4571 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This material is based on work performed by the Liquid Sunlight Alliance, which is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, and Fuels from Sunlight Hub under award no. DE-SC0021266. We also acknowledge the support from SoCalGas on the analysis of CO2 capture processes under award no. 5660060287. This research received funding from the Netherlands Organization for Scientific Research (NWO) under project no. 733.000.008 in the framework of the Solar to Products programme co-funded by Shell Global Solutions International B.V., and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 852115).

Author information

Authors and Affiliations

Authors

Contributions

C.X., H.A.A. and D.A.V. conceptualized and organized different levels of coupling between electrochemical CO2 conversion with CO2 capture in the manuscript. I.S. and A.G. contributed to writing and editing of the various approaches for coupling CO2 capture with CO2 conversion. I.A.D. and X.L. contributed to preparing the figures and references, as well as editing of the manuscript.

Corresponding authors

Correspondence to Harry A. Atwater, David A. Vermaas or Chengxiang Xiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Caroline Saouma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullivan, I., Goryachev, A., Digdaya, I.A. et al. Coupling electrochemical CO2 conversion with CO2 capture. Nat Catal 4, 952–958 (2021). https://doi.org/10.1038/s41929-021-00699-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00699-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing