Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism

Abstract

Ammonia is the feedstock for nitrogen fertilizers and a potential carbon-free energy carrier; however, its production is highly energy intensive. Conventional heterogeneous catalysts based on metallic iron or ruthenium mediate dinitrogen dissociation and hydrogenation through a relatively energy-expensive pathway. Here we report the ternary ruthenium complex hydrides Li4RuH6 and Ba2RuH6 as an alternative class of catalysts, composed of electron- and hydrogen-rich [RuH6] anionic centres, for non-dissociative dinitrogen reduction, where hydridic hydrogen transports electrons and protons between the centres, and the Li/Ba cations stabilize NxHy (x = 0–2, y = 0–3) intermediates. The dynamic and synergistic involvement of all the components of the ternary complex hydrides facilitates an associative reaction mechanism with a narrow energy span and perfectly balanced kinetic barriers for the multistep process, leading to ammonia production from N2 + H2 with superior kinetics under mild conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Properties of Li4RuH6.
Fig. 2: Catalytic performances.
Fig. 3: Mechanistic investigations on N2 activation and hydrogenation over Li4RuH6 surface.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information or from the corresponding authors upon reasonable request. The atomic coordinates of the optimized electronic structures are available in the data repository https://data.dtu.dk/, and can be accessed using the link https://doi.org/10.11583/DTU.16621918.v1. Source data are provided with this paper.

References

  1. Hoffman, B. M., Lukoyanov, D., Dean, D. R. & Seefeldt, L. C. Nitrogenase: a draft mechanism. Acc. Chem. Res. 46, 587–595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sippel, D. et al. A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 359, 1484–1489 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Yandulov, D. V. & Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 76–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Ashida, Y., Arashiba, K., Nakajima, K. & Nishibayashi, Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature 568, 536–540 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Nishibayashi, Y. Nitrogen Fixation Vol. 60, 1st edn (Topics in Organometallic Chemistry, Springer, 2017).

  6. van der Ham, C. J. M., Koper, M. T. M. & Hetterschied, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 43, 5183–5191 (2014).

    Article  PubMed  Google Scholar 

  7. Jennings, J. R. Catalytic Ammonia Synthesis: Fundamentals and Practice 1st edn (Springer, 1991).

  8. Dahl, S., Törnqvist, E. & Chorkendorff, I. Dissociative adsorption of N2 on Ru(0001): a surface reaction totally dominated by steps. J. Catal. 192, 381–390 (2000).

    Article  CAS  Google Scholar 

  9. Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Aika, K.-i Role of alkali promoter in ammonia synthesis over ruthenium catalysts—effect on reaction mechanism. Catal. Today 286, 14–20 (2017).

    Article  CAS  Google Scholar 

  11. Vojvodic, A. et al. Exploring the limits: a low-pressure, low-temperature Haber–Bosch process. Chem. Phys. Lett. 598, 108–112 (2014).

    Article  CAS  Google Scholar 

  12. Kozuch, S. & Shaik, S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 44, 101–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Avenier, P. et al. Dinitrogen dissociation on an isolated surface tantalum atom. Science 317, 1056–1060 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, J.-C. et al. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 9, 1610 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zeinalipour-Yazdi, C. D., Hargreaves, J. S. J. & Catlow, C. R. A. Low-T mechanisms of ammonia synthesis on Co3Mo3N. J. Phys. Chem. C 122, 6078–6082 (2018).

    Article  CAS  Google Scholar 

  16. Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen storage. Nat. Chem. 4, 934–940 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, P. et al. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 9, 64–70 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Gong, Y. et al. Ternary intermetallic LaCoSi as a catalyst for N2 activation. Nat. Catal. 1, 178–185 (2018).

    Article  CAS  Google Scholar 

  19. Tang, Y. et al. Metal-dependent support effects of oxyhydride-supported Ru, Fe, Co catalysts for ammonia synthesis. Adv. Energy Mater. 8, 1801772 (2018).

    Article  Google Scholar 

  20. Wang, P. et al. The formation of surface lithium–iron ternary hydride and its function on catalytic ammonia synthesis at low temperatures. Angew. Chem. Int. Ed. 56, 8716–8720 (2017).

    Article  CAS  Google Scholar 

  21. Yvon, K. & Renaudin, G. Hydrides: Solid State Transition Metal Complexes (Wiley, 2006).

  22. Saitoh, H. et al. Li4FeH6: iron-containing complex hydride with high gravimetric hydrogen density. APL Mater. 2, 076103 (2014).

    Article  Google Scholar 

  23. Humphries, T. D., Sheppard, D. A. & Buckley, C. E. Recent advances in the 18-electron complex transition metal hydrides of Ni, Fe, Co and Ru. Coord. Chem. Rev. 342, 19–33 (2017).

    Article  CAS  Google Scholar 

  24. Orgaz, E. & Aburto, A. Electronic structure of ternary ruthenium-based hydrides. J. Phys. Chem. C 112, 15586–15594 (2008).

    Article  CAS  Google Scholar 

  25. Nicholson, K. M. & Sholl, D. S. First-principles screening of complex transition metal hydrides for high temperature applications. Inorg. Chem. 53, 11833–11848 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Rosowski, F. et al. Ruthenium catalysts for ammonia synthesis at high pressures: preparation, characterization, and power-law kinetics. Appl. Catal. A 151, 443–460 (1997).

    Article  CAS  Google Scholar 

  27. Xie, Y. et al. Long-term real-time monitoring catalytic synthesis of ammonia in a microreactor by VUV-lamp-based charge-transfer ionization time-of-flight mass spectrometry. Anal. Chem. 86, 7681–7687 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Jia, H. P. & Quadrelli, E. A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 43, 547–564 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Ballmann, J., Munhá, R. F. & Fryzuk, M. D. The hydride route to the preparation of dinitrogen complexes. Chem. Commun. 46, 1013–1025 (2010).

    Article  CAS  Google Scholar 

  30. Shima, T. et al. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science 340, 1549–1552 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Shima, T., Luo, G., Hu, S., Luo, Y. & Hou, Z. Experimental and computational studies of dinitrogen activation and hydrogenation at a tetranuclear titanium imide/hydride framework. J. Am. Chem. Soc. 141, 2713–2720 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Shima, T., Yang, J., Luo, G., Luo, Y. & Hou, Z. Dinitrogen activation and hydrogenation by C5Me4SiMe3-ligated di- and trinuclear chromium hydride complexes. J. Am. Chem. Soc. 142, 9007–9016 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Knoth, W. H. Dihydrido (dinitrogen) tris (triphenylphosphine) ruthenium. Dinitrogen bridging ruthenium and boron. J. Am. Chem. Soc. 94, 104–109 (1972).

    Article  CAS  Google Scholar 

  34. Rod, T. H., Logadottir, A. & Nørskov, J. K. Ammonia synthesis at low temperatures. J. Phys. Chem. 112, 5343–5347 (2000).

    Article  CAS  Google Scholar 

  35. Garden, A. L. & Skúlason, E. The mechanism of industrial ammonia synthesis revisited: calculations of the role of the associative mechanism. J. Phys. Chem. C 119, 26554–26559 (2015).

    Article  CAS  Google Scholar 

  36. Castleman, A. Jr & Keesee, R. Clusters: bridging the gas and condensed phases. Acc. Chem. Res. 19, 413–419 (1986).

    Article  CAS  Google Scholar 

  37. Rodriguez, M. M., Bill, E., Brennessel, W. W. & Holland, P. L. N2 reduction and hydrogenation to ammonia by a molecular iron–potassium complex. Science 334, 780–783 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Falcone, M., Chatelain, L., Scopelliti, R., Živković, I. & Mazzanti, M. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex. Nature 547, 332–335 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. McEnaney, J. M. et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ. Sci. 10, 1621–1630 (2017).

    Article  CAS  Google Scholar 

  40. Sato, T. et al. Raman and infrared spectroscopic studies on Li4RuH6 combined with first-principles calculations. Mater. Trans. 55, 1117–1121 (2014).

    Article  CAS  Google Scholar 

  41. Kritikos, M. & Nore´us, D. Synthesis and characterization of ternary alkaline-earth transition-metal hydrides containing octahedral [Ru(II)H6]4− and [Os(II)H6]4− complexes. J. Solid State Chem. 93, 256–262 (1991).

    Article  CAS  Google Scholar 

  42. Gao, W. et al. Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: a case study of cobalt. ACS Catal. 7, 3654–3661 (2017).

    Article  CAS  Google Scholar 

  43. Guan, H. et al. Preparation of nanometer magnesia with high surface area and study on the influencing factors of the preparation process. Acta Physico Chimica Sinica 22, 804–807 (2006).

    Article  CAS  Google Scholar 

  44. Ju, X. et al. Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing COx-free hydrogen from ammonia decomposition. Appl. Catal. B 211, 167–175 (2017).

    Article  CAS  Google Scholar 

  45. Toebes, M. L., Prinsloo, F. F., Bitter, J. H., van Dillen, A. J. & de Jong, K. P. Influence of oxygen-containing surface groups on the activity and selectivity of carbon nanofiber-supported ruthenium catalysts in the hydrogenation of cinnamaldehyde. J. Catal. 214, 78–87 (2003).

    Article  CAS  Google Scholar 

  46. Gao, W. et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat. Energy 3, 1067–1075 (2018).

    Article  CAS  Google Scholar 

  47. Bösenberg, U. et al. Characterization of metal hydrides by in-situ XRD. Int. J. Hydrogen Energy 39, 9899–9903 (2014).

    Article  Google Scholar 

  48. Hua, L. et al. Single photon ionization and chemical ionization combined ion source based on a vacuum ultraviolet lamp for orthogonal acceleration time-of-flight mass spectrometry. Anal. Chem. 83, 5309–5316 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Qin, Z., Wu, X. & Tang, Z. Note: A novel dual-channel time-of-flight mass spectrometer for photoelectron imaging spectroscopy. Rev. Sci. Instrum. 84, 066108 (2013).

    Article  PubMed  Google Scholar 

  50. Rapp, W. et al. α- and neutron-induced reactions on ruthenium isotopes. Phys. Rev. C 66, 015803 (2002).

    Article  Google Scholar 

  51. Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Anderson, J. S., Rittle, J. & Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84–87 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, J. et al. Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proc. Natl Acad. Sci. USA 113, 5530–5535 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kammert, J. et al. Nature of reactive hydrogen for ammonia synthesis over a Ru/C12A7 electride catalyst. J. Am. Chem. Soc. 142, 7655–7667 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Siporin, S. E. & Davis, R. J. Isotopic transient analysis of ammonia synthesis over Ru/MgO catalysts promoted by cesium, barium, or lanthanum. J. Catal. 222, 315–322 (2004).

    Article  CAS  Google Scholar 

  56. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  57. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  58. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  59. Cramer, C. J. Ed., Essentials of Computational Chemistry 2nd edn (Wiley, 2004).

  60. Sprowl, L. H., Campbell, C. T. & Árnadóttir, L. Hindered translator and hindered rotor models for adsorbates: partition functions and entropies. J. Phys. Chem. C 120, 9719–9731 (2016).

    Article  CAS  Google Scholar 

  61. Sprowl, L. H., Campbell, C. T. & Arnadottir, L. Correction to ‘hindered translator and hindered rotor models for adsorbates: partition functions and entropies’. J. Phys. Chem. C 121, 9655–9655 (2017).

    Article  CAS  Google Scholar 

  62. Campbell, C. T., Sprowl, L. H. & Árnadóttir, L. Equilibrium constants and rate constants for adsorbates: two-dimensional (2D) ideal gas, 2D ideal lattice gas, and ideal hindered translator models. J. Phys. Chem. C 120, 10283–10297 (2016).

    Article  CAS  Google Scholar 

  63. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the beam time of the Shanghai Synchrotron Radiation Facility and Deutsches Elektronen-Synchrotron and the help of J.-C. Tseng and J. Bednarcik for in situ SR-PXD. P.C. and J.G. thank the National Natural Science Foundation of China (grant numbers 21988101, 21633011 and 21922205), the Dalian Institute of Chemical Physics (DCLS201701) and the K.C. Wong Education Foundation (GJTD-2018-06) for financial support; J.P., H.A.H. and T.V. thank the Villum Foundation for financial support through the research centre V-Sustain (#9455).

Author information

Authors and Affiliations

Authors

Contributions

P.C. conceived the project. P.C. and T.V. co-supervised the research and wrote the paper. Q.W. conducted most of the experimental work and prepared supplementary information. J.P. conducted DFT calculations and co-prepared the supplementary information. J.G. supervised the experimental work. H.A.H. supervised the theoretical work. H.X. and L.J. assisted with the gas-phase optical spectroscopy–mass spectroscopy experiments. L.H. and H.L. assisted with the CTI-TOFMS experiments. Z.X. assisted with the N2 isotope-exchange experiments. Y.G., P.W., W.G., L.L., and H.C. assisted with materials synthesis. All authors participated in the discussion and data analyses.

Corresponding authors

Correspondence to Tejs Vegge or Ping Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Bingyu Lin, Jingxiang Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The stability of bulk Li4RuH6 and Ba2RuH6 under different conditions.

a, TPR profile of Li4RuH6 in a mixture gas of NH3-Ar (NH3:Ar=0.5:99.5) and a mixture gas of NH3-H2-Ar (NH3:H2:Ar=0.5:75:24.5). b, In situ SR-PXD characterization of Li4RuH6 sample under atmospheric N2 and elevated temperatures (from 473 K to 773 K). c, In situ SR-PXD characterization of Ba2RuH6 sample under atmospheric H2-N2 (H2:N2 = 3:1) mixture and elevated temperatures (from 637 K to 923 K). d, TPR profile of Ba2RuH6 in a mixture gas of NH3-Ar (NH3:Ar=0.5:99.5) and a mixture gas of NH3-H2-Ar (NH3:H2:Ar=0.5:75:24.5). The above results show that the Li4RuH6 phase is stable up to ca. 651 K under N2 atmosphere. While upon co-feeding H2, it survives until 738 K (Fig. 1e). Li4RuH6 is also resistant to diluted NH3 especially in the presence of H2. Ba2RuH6 phase is stable up to 923 K under atmospheric H2-N2 mixture. Ba2RuH6 is also resistant to diluted NH3 especially in the presence of H2.

Extended Data Fig. 2 Measurements of kinetic parameters.

a and b are the Arrhenius plots of the Li4RuH6, ball-milled Li4RuH6 (Li4RuH6 (BM)), ball-milled mixture of Li4RuH6 and BN (Li4RuH6-BN-(BM)), ball-milled mixture of Li4RuH6 and MgO (Li4RuH6-MgO-(BM)), Li4RuH6/MgO, Ba2RuH6/MgO, Ru/MgO, and Cs-Ru/MgO catalysts. c to e are the dependences of ammonia synthesis rates on the partial pressures of NH3, N2, and H2, respectively, under a total pressure of 1 bar at 573 K over Li4RuH6/MgO, Ba2RuH6/MgO, Ru/MgO, and Cs-Ru/MgO catalysts.

Extended Data Fig. 3 Measurements of low-temperature NH3 synthesis rates using 1H NMR spectroscopy.

a, 1H NMR spectra of 14NH4Cl and 15NH4Cl solutions in the concentration range of 30 to 1000 μM (with equimolar concentrations of 14NH4+ and 15NH4+). b, Linear calibration curves for both 14NH4+ and 15NH4+ derived from a. c and d are the 1H NMR spectra of 14NH4+ and 15NH4+ signals of the sulfuric acid solutions which absorbed the outlet gas at 373 K, 423 K and 473 K, respectively, e and f are the corresponding 14NH3 and 15NH3 synthesis rates derived from the 1H NMR. Measurement conditions: Ba2RuH6/MgO catalyst 30 mg, H2:14N2(15N2) = 2:3, flow rate 10 ml min−1, and 1 bar. Error bars shown in e and f represent the standard deviation from three independent 1H NMR measurements.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, Tables 1–5 and references.

Source data

Source Data Fig. 2

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Pan, J., Guo, J. et al. Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism. Nat Catal 4, 959–967 (2021). https://doi.org/10.1038/s41929-021-00698-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00698-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing