Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Solar methanol energy storage

An Author Correction to this article was published on 24 December 2021

This article has been updated

Abstract

The intermittency of renewable electricity requires the deployment of energy-storage technologies as global energy grids become more sustainably sourced. Upcycling carbon dioxide (CO2) and intermittently generated renewable hydrogen to stored products such as methanol (MeOH) allows the cyclic use of carbon and addresses the challenges of storage energy density, size and transportability as well as responsiveness to energy production and demand better than most storage alternatives. Deploying this storage solution efficiently and at scale requires the optimization of production conditions to ensure predictable and maximum long-term process performance. Key to enabling this solution is the generation of highly productive syngas that is rich in carbon monoxide (CO) via reverse water-gas shift (RWGS) or solid-oxide electrolysis cell technologies. The focus herein is the RWGS reaction as it enables a solar-to-fuel efficiency of around 10% that can be deployable at a commercial scale. The need for a higher-efficiency route to renewable MeOH is discussed, and a comparative technoeconomic analysis of two solar-derived MeOH (solar MeOH) strategies is presented: the solar-CO-rich (based on the solar-RWGS process) and the solar-direct-CO2 routes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Key metrics and figures for RWGS technology incorporation.
Fig. 2: MeOH energy-storage scheme and performance.

Change history

References

  1. Henze, V. Energy storage is a $620 billion investment opportunity to 2040. BloombergNEF. https://about.bnef.com/blog/energy-storage-620-billion-investment-opportunity-2040/ (2018).

  2. Dias, V., Pochet, M., Contino, F. & Jeanmart, H. Energy and economic costs of chemical storage. Front. Mech. Eng. https://doi.org/10.3389/fmech.2020.00021 (2020).

  3. Kaiser, P., Unde, R. B., Kern, C. & Jess, A. Production of liquid hydrocarbons with CO2 as carbon source based on reverse water-gas shift and Fischer-Tropsch synthesis. Chem. Ing. Tech. 85, 489–499 (2013).

    Article  CAS  Google Scholar 

  4. Graver, B., Rutherford, D. & Zheng, S. CO2 Emissions from Commercial Aviation: 2013, 2018, and 2019 (International Council on Clean Transportation, 2020).

  5. Reducing emissions from the shipping sector. European Commission www.ec.europa.eu/clima/policies/transport/shipping_en (2020).

  6. Service, R. F. Can the world make the chemicals it needs without oil? Science (19 September 2019).

  7. Global CO2 emissions in 2019. International Energy Agency https://www.iea.org/articles/global-co2-emissions-in-2019 (2020).

  8. IRENA and Methanol Institute. Innovation Outlook: Renewable Methanol (International Renewable Energy Agency, 2021).

  9. Tountas, A. A. et al. Towards solar methanol: past, present, and future. Adv. Sci. 6, 1801903 (2019).

    Article  CAS  Google Scholar 

  10. Sigwadi, R., Mokrani, T., Dhlamini, S. & Msomi, P. F. Nafion® reinforced with polyacrylonitrile/ZrO2 nanofibers for direct methanol fuel cell application. J. Appl. Polym. Sci. 138, 49978 (2021).

    Article  CAS  Google Scholar 

  11. Hyatt, K. California to ban new gas, diesel vehicle sales by 2035. Roadshow by CNET https://www.cnet.com/roadshow/news/california-gas-diesel-car-truck-sales-ban-2035-newsom/#ftag=CAD590a51e (2020).

  12. Cipriani, G. et al. Perspective on hydrogen energy carrier and its automotive applications. Int. J. Hydrog. Energy 39, 8482–8494 (2014).

    Article  CAS  Google Scholar 

  13. Olah, G. A., Goeppert, A. & Prakash, G. K. S. Beyond Oil and Gas: The Methanol Economy 2nd edn (Wiley, 2009)

  14. Ouyang, L., Chen, K., Jiang, J., Yang, X. S. & Zhu, M. Hydrogen storage in light-metal based systems: a review. J. Alloys Compd 829, 154597 (2020).

    Article  CAS  Google Scholar 

  15. New powerpaste for hydrogen storage. Renewable Energy Magazine https://www.renewableenergymagazine.com/hydrogen/new-powerpaste-for-hydrogen-storage-20210204 (2021).

  16. Bongartz, D., Burre, J. & Mitsos, A. Production of oxymethylene dimethyl ethers from hydrogen and carbon dioxide—part I: modeling and analysis for OME1. Ind. Eng. Chem. Res. 58, 4881–4889 (2019).

    Article  CAS  Google Scholar 

  17. Sá, S., Silva, H., Brandão, L., Sousa, J. M. & Mendes, A. Catalysts for methanol steam reforming—a review. Appl. Catal. B 99, 43–57 (2010).

    Article  CAS  Google Scholar 

  18. Herron, J. A., Kim, J., Upadhye, A. A., Huber, G. W. & Maravelias, C. T. A general framework for the assessment of solar fuel technologies. Energy Environ. Sci. 8, 126–157 (2015).

    Article  CAS  Google Scholar 

  19. Ramsden, T., Steward, D. & Zuboy, J. Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2 (National Renewable Energy Laboratory, 2009).

  20. Ainscough, C., Peterson, D. & Miller, E. Hydrogen Production Cost From PEM Electrolysis (US Department of Energy, 2014).

  21. El-Emam, R. S. & Özcan, H. Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. J. Clean. Prod. 220, 593–609 (2019).

    Article  CAS  Google Scholar 

  22. Herring, S. J. et al. Hydrogen Production Using Nuclear Energy NP-T-4.2 (International Atomic Energy Agency, 2013).

  23. Zheng, Y. et al. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chem. Soc. Rev. 46, 1427–1463 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Graves, C., Ebbesen, S. D., Mogensen, M. & Lackner, K. S. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew. Sustain. Energy Rev. 15, 1–23 (2011).

    Article  CAS  Google Scholar 

  25. Revankar, S. T. in Storage and Hybridization of Nuclear Energy: Techno-economic Integration of Renewable and Nuclear Energy (eds Bindra, H. & Revankar, S. T.) Ch. 4 (Academic, 2018).

  26. Direct air capture as an enabler of ultra-low carbon fuels. Carbon Engineering https://carbonengineering.com/wp-content/uploads/2019/11/DAC-as-an-enabler-of-ultra-low-cost-carbon-fuels.pdf (2013).

  27. Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).

    Article  CAS  Google Scholar 

  28. Welch, A. J., Dunn, E., Duchene, J. S. & Atwater, H. A. Bicarbonate or carbonate processes for coupling carbon dioxide capture and electrochemical conversion. ACS Energy Lett. 5, 940–945 (2020).

    Article  CAS  Google Scholar 

  29. Folger, P. Carbon Capture: A Technology Assessment (Congressional Research Service, 2013).

  30. Fasihi, M., Efimova, O. & Breyer, C. Techno-economic assessment of CO2 direct air capture plants. J. Clean. Prod. 224, 957–980 (2019).

    Article  CAS  Google Scholar 

  31. Gebald, C., Wurzbacher, J. A., Tingaut, P., Zimmermann, T. & Steinfeld, A. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ. Sci. Technol. 45, 9101–9108 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Direct air capture to help reverse climate change. Climeworks www.climeworks.com/co2-removal (2020).

  33. Realmonte, G. et al. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 10, 3277 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fujikawa, S., Selyanchyn, R. & Kunitake, T. A new strategy for membrane-based direct air capture. Polym. J. 53, 111–119 (2021).

    Article  CAS  Google Scholar 

  35. Wenzel, M., Rihko-Struckmann, L. & Sundmacher, K. Thermodynamic analysis and optimization of RWGS processes for solar syngas production from CO2. AIChE J. 63, 15–22 (2017).

    Article  CAS  Google Scholar 

  36. González-Castaño, M., Dorneanu, B. & Arellano-García, H. The reverse water gas shift reaction: a process systems engineering perspective. React. Chem. Eng. 6, 954–976 (2021).

    Article  Google Scholar 

  37. Daza, Y. A. & Kuhn, J. N. CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Adv. 6, 49675–49691 (2016).

    Article  CAS  Google Scholar 

  38. Porosoff, M. D., Yan, B. & Chen, J. G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ. Sci. 9, 62–73 (2016).

    Article  CAS  Google Scholar 

  39. Vidal Vázquez, F. et al. Catalyst screening and kinetic modeling for CO production by high pressure and temperature reverse water gas shift for Fischer-Tropsch applications. Ind. Eng. Chem. Res. 56, 13262–13272 (2017).

    Article  CAS  Google Scholar 

  40. Dong, Y. et al. Shining light on CO2: from materials discovery to photocatalyst, photoreactor and process engineering. Chem. Soc. Rev. 49, 5648–5663 (2020).

    Article  CAS  Google Scholar 

  41. De Falco, M., Iaquaniello, G. & Centi, G. (eds) CO2: A Valuable Source of Carbon Vol. 137 (Springer, 2013).

  42. Elsernagawy, O. Y. H. et al. Thermo-economic analysis of reverse water-gas shift process with different temperatures for green methanol production as a hydrogen carrier. J. CO2 Util. 41, 101280 (2020).

  43. Küngas, R. et al. eCOs - a commercial CO2 electrolysis system developed by Haldor Topsoe. ECS Trans. 78, 2879–2884 (2017).

    Article  CAS  Google Scholar 

  44. Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018).

    Article  CAS  Google Scholar 

  45. Natesakhawat, S. et al. Adsorption and deactivation characteristics of Cu/ZnO-based catalysts for methanol synthesis from carbon dioxide. Top. Catal. 56, 1752–1763 (2013).

    Article  CAS  Google Scholar 

  46. Prašnikar, A., Pavlišič, A., Ruiz-Zepeda, F., Kovač, J. & Likozar, B. Mechanisms of copper-based catalyst deactivation during CO2 reduction to methanol. Ind. Eng. Chem. Res. 58, 13021–13029 (2019).

    Article  CAS  Google Scholar 

  47. Etim, U. J., Song, Y. & Zhong, Z. Improving the Cu/ZnO-based catalysts for carbon dioxide hydrogenation to methanol, and the use of methanol as a renewable energy storage media. Front. Energy Res. https://doi.org/10.3389/fenrg.2020.545431 (2020).

  48. Fichtl, M. B. et al. Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalysts. Appl. Catal. A 502, 262–270 (2015).

    Article  CAS  Google Scholar 

  49. Kung, H. H. Deactivation of methanol synthesis catalysts - a review. Catal. Today 11, 443–453 (1992).

    Article  CAS  Google Scholar 

  50. Tountas, A. A., Ozin, G. A. & Sain, M. M. Continuous reactor for renewable methanol. Green. Chem. 23, 340–353 (2021).

    Article  CAS  Google Scholar 

  51. Dieterich, V., Buttler, A., Hanel, A., Spliethoff, H. & Fendt, S. Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: a review. Energy Environ. Sci. 13, 3207–3252 (2020).

    Article  CAS  Google Scholar 

  52. Sarp, S., Hernandez, S. G., Chen, C. & Sheehan, S. W. Alcohol production from carbon dioxide: methanol as a fuel and chemical feedstock. Joule 5, 59–76 (2021).

    Article  CAS  Google Scholar 

  53. Bos, M. J. & Brilman, D. W. F. A novel condensation reactor for efficient CO2 to methanol conversion for storage of renewable electric energy. Chem. Eng. J. 278, 527–532 (2015).

    Article  CAS  Google Scholar 

  54. Stechel, E. B. & Miller, J. E. Re-energizing CO2 to fuels with the sun: issues of efficiency, scale, and economics. J. CO2 Util. 1, 28–36 (2013).

  55. Lee, B. et al. Renewable methanol synthesis from renewable H2 and captured CO2: how can power-to-liquid technology be economically feasible? Appl. Energy 279, 115827 (2020).

    Article  CAS  Google Scholar 

  56. Juneau, M. et al. Assessing the viability of K-Mo2C for reverse water-gas shift scale-up: molecular to laboratory to pilot scale. Energy Environ. Sci. 13, 2524–2539 (2020).

    Article  CAS  Google Scholar 

  57. Joo, O.-S. et al. Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process). Ind. Eng. Chem. Res. 38, 1808–1812 (1999).

    Article  CAS  Google Scholar 

  58. Dimitriou, I. et al. Carbon dioxide utilisation for production of transport fuels: process and economic analysis. Energy Environ. Sci. 8, 1775–1789 (2015).

    Article  CAS  Google Scholar 

  59. Zubrin, R. M., Muscatello, A. C. & Berggren, M. Integrated Mars in situ propellant production system. J. Aerosp. Eng. 26, 43–56 (2013).

    Article  Google Scholar 

  60. Yang, Y., Mims, C. A., Mei, D. H., Peden, C. H. F. & Campbell, C. T. Mechanistic studies of methanol synthesis over Cu from CO/CO2/H2/H2O mixtures: the source of C in methanol and the role of water. J. Catal. 298, 10–17 (2013).

    Article  CAS  Google Scholar 

  61. Marlin, D. S., Sarron, E. & Sigurbjörnsson, Ó. Process advantages of direct CO2 to methanol synthesis. Front. Chem. https://doi.org/10.3389/fchem.2018.00446 (2018).

  62. Hafeez, S., Manos, G., Al-Salem, S. M., Aristodemou, E. & Constantinou, A. Liquid fuel synthesis in microreactors. React. Chem. Eng. 3, 414–432 (2018).

    Article  CAS  Google Scholar 

  63. Chan, T. Renewable methanol webinar: a net carbon-neutral fuel. Methanol Institute (5 August 2020).

  64. Vanden Bussche, K. M. & Froment, G. F. A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. J. Catal. 161, 1–10 (1996).

    Article  CAS  Google Scholar 

  65. Slotboom, Y. et al. Critical assessment of steady-state kinetic models for the synthesis of methanol over an industrial Cu/ZnO/Al2O3 catalyst. Chem. Eng. J. 389, 124181 (2020).

    Article  CAS  Google Scholar 

  66. Bozzano, G. & Manenti, F. Efficient methanol synthesis: perspectives, technologies and optimization strategies. Prog. Energy Combust. Sci. 56, 71–105 (2016).

    Article  Google Scholar 

  67. Bertau, M. et al. (eds), Methanol: The Basic Chemical and Energy Feedstock of the Future (Springer, 2014).

  68. Bukhtiyarova, M., Lunkenbein, T., Kähler, K. & Schlögl, R. Methanol synthesis from industrial ­ CO2 sources: a contribution to chemical energy conversion. Catal. Lett. 147, 416–427 (2017).

    Article  CAS  Google Scholar 

  69. Rezaie, N., Jahanmiri, A., Moghtaderi, B. & Rahimpour, M. R. A comparison of homogeneous and heterogeneous dynamic models for industrial methanol reactors in the presence of catalyst deactivation. Chem. Eng. Process. 44, 911–921 (2005).

    Article  CAS  Google Scholar 

  70. Prieto, G., Meeldijk, J. D., De Jong, K. P. & De Jongh, P. E. Interplay between pore size and nanoparticle spatial distribution: consequences for the stability of CuZn/SiO2 methanol synthesis catalysts. J. Catal. 303, 31–40 (2013).

    Article  CAS  Google Scholar 

  71. Riaz, A., Zahedi, G. & Klemeš, J. J. A review of cleaner production methods for the manufacture of methanol. J. Clean. Prod. 57, 19–37 (2013).

    Article  CAS  Google Scholar 

  72. Klier, K., Chatikavanu, R., Herman, G. & Simmons, G. W. Catalytic synthesis of methanol from CO/H2: IV. The effects of carbon dioxide. J. Catal. 74, 343–360 (1982).

    Article  CAS  Google Scholar 

  73. Rasmussen, D. B. et al. The energies of formation and mobilities of Cu surface species on Cu and ZnO in methanol and water gas shift atmospheres studied by DFT. J. Catal. 293, 205–214 (2012).

    Article  CAS  Google Scholar 

  74. Breeze, P. in Power System Energy Storage Technologies Ch. 5 (Academic, 2018); https://doi.org/10.1016/B978-0-12-812902-9.00005-5

  75. Miller, J. R. Capacitors for Power Grid Storage (US Department of Energy, 2010); https://www.energy.gov/sites/prod/files/piprod/documents/Session_D_Miller_rev.pdf

  76. Fact Sheet: Frequency Regulation and Flywheels. Beacon Power https://web.archive.org/web/20100331042630/http://www.beaconpower.com/files/Flywheel_FR-Fact-Sheet.pdf (31 March 2010).

  77. Esparcia, E. A., Castro, M. T., Buendia, R. E. & Ocon, J. D. Long-discharge flywheel versus battery energy storage for microgrids: a techno-economic comparison. Chem. Eng. Trans. 76, 949–954 (2019).

    Google Scholar 

  78. Highly efficient electromechanical energy storage. American Maglev Technology http://american-maglev.com/fess (accessed 31 October 2021).

  79. Jacob, R., Saman, W. & Bruno, F. Capital cost expenditure of high temperature latent and sensible thermal energy storage systems. AIP Conf. Proc. 1850, 080012 (2017).

    Article  Google Scholar 

  80. Zablocki, A. Fact Sheet: Energy Storage (2019). Environmental and Energy Study Institute https://www.eesi.org/papers/view/energy-storage-2019 (2019).

  81. Park, S. W., Joo, O. S., Jung, K. D., Kim, H. & Han, S. H. Development of ZnO/Al2O3 catalyst for reverse-water-gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process. Appl. Catal. A 211, 81–90 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thank you to X. Peng and C. T. Maravelias for the referenced TEA analysis. Thank you to K. Raina for proofreading the manuscript. We thank J. Fryer for the art concept for the graphical abstract and Fig. 2a. All authors thank J. Tjong of Ford Motor Canada for financial support. G.A.O. acknowledges the financial support of the Ontario Ministry of Research and Innovation (MRI), the Ministry of Economic Development, Employment and Infrastructure (MEDI), the Ministry of the Environment and Climate Change’s (MOECC) Best in Science (BIS) Award, Ontario Centre of Excellence Solutions 2030 Challenge Fund, Ministry of Research Innovation and Science (MRIS) Low Carbon Innovation Fund (LCIF), Imperial Oil, the University of Toronto’s Connaught Innovation Fund (CIF), Connaught Global Challenge (CGC) Fund and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Contributions

A.A.T. conceived the analysis and wrote the Perspective. G.A.O. and M.M.S. provided critical guidance and advice.

Corresponding author

Correspondence to Geoffrey A. Ozin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tountas, A.A., Ozin, G.A. & Sain, M.M. Solar methanol energy storage. Nat Catal 4, 934–942 (2021). https://doi.org/10.1038/s41929-021-00696-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00696-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing