Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct methane activation by atomically thin platinum nanolayers on two-dimensional metal carbides

Abstract

Efficient and direct conversion of methane to value-added products has been a long-term challenge in shale gas applications. Here, we show that atomically thin nanolayers of Pt with a single or double atomic layer thickness, supported on a two-dimensional molybdenum titanium carbide (MXene), catalyse non-oxidative coupling of methane to ethane/ethylene (C2). Kinetic and theoretical studies, combined with in-situ spectroscopic and microscopic characterizations, demonstrate that Pt nanolayers anchored at the hexagonal close-packed sites of the MXene support can activate the first C–H bond of methane to form methyl radicals that favour desorption over further dehydrogenation and thus suppress coke deposition. At 750 °C and 7% methane conversion, the catalyst runs for 72 hours of continuous operation without deactivation and exhibits >98% selectivity towards C2 products, with a turnover frequency of 0.2–0.6 s−1. Our findings provide insights into the design of highly active and stable catalysts for methane activation and create a platform for developing atomically thin supported metal catalysts.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Atomic structure and DFT calculations of Pt supported by Mo2TiC2Tx MXene.
Fig. 2: Catalytic performance of Pt/Mo2TiC2Tx for non-oxidative coupling of methane.
Fig. 3: Structural characterization of 0.5% Pt/Mo2TiC2Tx catalysts reduced at 750 °C.
Fig. 4: Oxidation tests and DFT calculations.

Data availability

The data that support the findings of this study are deposited at https://iastate.box.com/s/sf9go743qngg8ta0ufni0q102nu7hvjv. All the data and access are available from the corresponding authors on reasonable request.

References

  1. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    CAS  PubMed  Article  Google Scholar 

  2. Coperet, C. et al. Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem. Rev. 116, 323–421 (2016).

    CAS  PubMed  Article  Google Scholar 

  3. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    CAS  PubMed  Article  Google Scholar 

  4. Kuznetsov, D. A. et al. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc. 141, 17809–17816 (2019).

    CAS  PubMed  Article  Google Scholar 

  5. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    CAS  Article  PubMed  Google Scholar 

  6. Xiong, H. et al. Thermally stable and regenerable platinum-tin clusters for propane dehydrogenation prepared by atom trapping on ceria. Angew. Chem. Int. Ed. Engl. 56, 8986–8991 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Zhu, Y. et al. Lattice-confined Sn (IV/II) stabilizing raft-like Pt clusters: high selectivity and durability in propane dehydrogenation. ACS Catal. 7, 6973–6978 (2017).

    CAS  Article  Google Scholar 

  8. Kwak, J. H., Kovarik, L. & Szanyi, J. Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catal. 3, 2094–2100 (2013).

    CAS  Article  Google Scholar 

  9. Zhu, Y. et al. Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. J. Catal. 353, 315–324 (2017).

    CAS  Article  Google Scholar 

  10. Hou, Y., Nagamatsu, S., Asakura, K., Fukuoka, A. & Kobayashi, H. Trace mono-atomically dispersed rhodium on zeolite-supported cobalt catalyst for the efficient methane oxidation. Commun. Chem. 1, 41 (2018).

    Article  CAS  Google Scholar 

  11. DeRita, L. et al. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 139, 14150–14165 (2017).

    CAS  PubMed  Article  Google Scholar 

  12. Liu, J. Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2017).

    CAS  Article  Google Scholar 

  13. Kwak, J. H. et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 325, 1670–1673 (2009).

    CAS  PubMed  Article  Google Scholar 

  14. Yao, S. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357, 389–393 (2017).

    CAS  PubMed  Article  Google Scholar 

  15. Wang, S. et al. In situ atomic-scale studies of the formation of epitaxial Pt nanocrystals on monolayer molybdenum disulfide. ACS Nano 11, 9057–9067 (2017).

    CAS  PubMed  Article  Google Scholar 

  16. Göhl, D. et al. Engineering stable electrocatalysts by synergistic stabilization between carbide cores and Pt shells. Nat. Mater. 19, 287–291 (2020).

    PubMed  Article  CAS  Google Scholar 

  17. Wang, L. et al. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 363, 870–874 (2019).

    CAS  PubMed  Article  Google Scholar 

  18. Esposito, D. V., Hunt, S. T., Kimmel, Y. C. & Chen, J. G. A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides. J. Am. Chem. Soc. 134, 3025–3033 (2012).

    CAS  PubMed  Article  Google Scholar 

  19. Schweitzer, N. M. et al. High activity carbide supported catalysts for water gas shift. J. Am. Chem.Soc. 133, 2378–2381 (2011).

    CAS  PubMed  Article  Google Scholar 

  20. Hunt, S. T. et al. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 352, 974–978 (2016).

    CAS  PubMed  Article  Google Scholar 

  21. Guo, X. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).

    CAS  PubMed  Article  Google Scholar 

  22. Marcinkowski, M. D. et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation. Nat. Chem. 10, 325–332 (2018).

    CAS  PubMed  Article  Google Scholar 

  23. Spivey, J. J. & Hutchings, G. Catalytic aromatization of methane. Chem. Soc. Rev. 43, 792–803 (2014).

    CAS  PubMed  Article  Google Scholar 

  24. Belgued, M., Pareja, P., Amariglio, A. & Amariglio, H. Conversion of methane into higher hydrocarbons on platinum. Nature 352, 789–790 (1991).

    CAS  Article  Google Scholar 

  25. Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    CAS  PubMed  Article  Google Scholar 

  26. Thakur, R. et al. Insights into the genesis of a selective and coke-resistant MXene-based catalyst for the dry reforming of methane. ACS Catal. 10, 5124–5134 (2020).

    CAS  Article  Google Scholar 

  27. Anasori, B. et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015).

    CAS  PubMed  Article  Google Scholar 

  28. Zhang, J. et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018).

    CAS  Article  Google Scholar 

  29. Li, Z. et al. Reactive metal-support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 1, 349–355 (2018).

    CAS  Article  Google Scholar 

  30. Li, Z. et al. Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun. 9, 5258 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Li, Z. et al. In situ formed Pt3Ti nanoparticles on a two-dimensional transition metal carbide (MXene) used as efficient catalysts for hydrogen evolution reactions. Nano Lett. 19, 5102–5108 (2019).

    CAS  PubMed  Article  Google Scholar 

  32. Liu, J. Advanced electron microscopy of metal-support interactions in supported metal catalysts. ChemCatChem 3, 934–948 (2011).

    CAS  Article  Google Scholar 

  33. Schultz, T. et al. Surface termination dependent work function and electronic properties of Ti3C2Tx MXene. Chem. Mater. 31, 6590–6597 (2019).

    CAS  Article  Google Scholar 

  34. Gerceker, D. et al. Methane conversion to ethylene and aromatics on PtSn catalysts. ACS Catal. 7, 2088–2100 (2017).

    CAS  Article  Google Scholar 

  35. Xiao, Y. & Varma, A. Highly selective nonoxidative coupling of methane over Pt-Bi bimetallic catalysts. ACS Catal. 8, 2735–2740 (2018).

    CAS  Article  Google Scholar 

  36. Xie, P. et al. Nanoceria-supported single-atom platinum catalysts for direct methane conversion. ACS Catal. 8, 4044–4048 (2018).

    CAS  Article  Google Scholar 

  37. Ghose, R., Hwang, H. T. & Varma, A. Oxidative coupling of methane using catalysts synthesized by solution combustion method: catalyst optimization and kinetic studies. Appl. Catal. A 472, 39–46 (2014).

    CAS  Article  Google Scholar 

  38. Dutta, K., Shahryari, M. & Kopyscinski, J. Direct non-oxidative methane coupling to ethylene over gallium nitride. A catalyst regeneration study. Ind. Eng. Chem. Res. 59, 4245–4256 (2020).

    CAS  Article  Google Scholar 

  39. Deeva, E. B. et al. In situ XANES/XRD study of the structural stability of two-dimensional molybdenum carbide Mo2CTx: implications for the catalytic activity in the water-gas shift reaction. Chem. Mater. 31, 4505–4513 (2019).

    CAS  Article  Google Scholar 

  40. Wegener, E. C. et al. Intermetallic compounds as an alternative to single-atom alloy catalysts: geometric and electronic structures from advanced X-ray spectroscopies and computational studies. ChemCatChem 12, 1325–1333 (2020).

    CAS  Article  Google Scholar 

  41. Nørskov, J. K., Abild-Pedersen, F., Studt, F. & Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl Acad. Sci. USA 108, 937–943 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  42. Xi, Y. & Heyden, A. Direct oxidation of methane to methanol enabled by electronic atomic monolayer–metal support interaction. ACS Catal. 9, 6073–6079 (2019).

    CAS  Article  Google Scholar 

  43. Wang, W., Jiang, Y. & Hunger, M. Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy. Catal. Today 113, 102–114 (2006).

    CAS  Article  Google Scholar 

  44. Kosinov, N. et al. Structure and evolution of confined carbon species during methane dehydroaromatization over Mo/ZSM-5. ACS Catal. 8, 8459–8467 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Ohnishi, R., Liu, S., Dong, Q., Wang, L. & Ichikawa, M. Catalytic dehydrocondensation of methane with CO and CO2 toward benzene and naphthalene on Mo/HZSM-5 and Fe/Co-modified Mo/HZSM-5. J. Catal. 182, 92–103 (1999).

    CAS  Article  Google Scholar 

  46. Kosinov, N. et al. Reversible nature of coke formation on Mo/ZSM-5 methane dehydroaromatization catalysts. Angew. Chem. Int. Ed. Engl. 58, 7068–7072 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Finiels, A., Fajula, F. & Hulea, V. Nickel-based solid catalysts for ethylene oligomerization-a review. Catal. Sci. Technol. 4, 2412–2426 (2014).

    CAS  Article  Google Scholar 

  48. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS  PubMed  Article  Google Scholar 

  49. Weisz, P. & Prater, C. Interpretation of measurements in experimental catalysis. Adv. Catal. 6, 60390–60399 (1954).

    Google Scholar 

  50. Mears, D. E. Diagnostic criteria for heat transport limitations in fixed bed reactors. J. Catal. 20, 127–131 (1971).

    CAS  Article  Google Scholar 

  51. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Google Scholar 

  52. Gunasooriya, G. K. K. & Nørskov, J. K. Analysis of acid-stable and active oxides for the oxygen evolution reaction. ACS Energy Lett. 5, 3778–3787 (2020).

    CAS  Article  Google Scholar 

  53. Campbell, C. T., Árnadóttir, L. & Sellers, J. R. Kinetic prefactors of reactions on solid surfaces. Z. Phys. Chem. 227, 1435–1454 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Y.W. appreciates the support from the Herbert L. Stiles Professorship and Iowa State University College of Engineering exploratory research projects. J.C.Z., Z.W. and J.T.M. were supported in part by the National Science Foundation under Cooperative Agreement no. EEC-1647722. Y.X. and A.V. thank the R. Games Slayter Fund and the Varma Reaction Engineering Research Fund of Purdue University. Z.Z. and J.P.G. acknowledge financial support from NSF-CBET Award 1804712. T.M. acknowledges the financial support of the University of Michigan College of Engineering and technical support from the Michigan Center for Materials Characterization. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Basic Energy Sciences under contract no. DE-AC02-06CH11357. MRCAT operations, beamline 10-BM, are supported by the Department of Energy and the MRCAT member institutions. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. All TEM-related work was performed using instruments in the Sensitive Instrument Facility in Ames Laboratory. Ames Laboratory is operated for the US Department of Energy by Iowa State University under contract no. DE-AC02-07CH11358.

Author information

Authors and Affiliations

Authors

Contributions

Z.L. and Y.X. conceived the idea and designed the present work. Y.X., P.R.C. and Z.Z. conducted DFT calculations. Z.L., Y.X., P.J.P. and P.H. synthesized the catalysts and performed the catalytic evaluation. J.Z.C., Z.W., G.W., D.J. and J.T.M. carried out the spectroscopic characterizations. L.Z., T.M., T.-H.K. and Z.L. performed the detailed microscopic experiments. Y.W., J.T.M., X.R., J.P.G. and A.V. supervised the research.

Corresponding authors

Correspondence to Yang Xiao or Yue Wu.

Ethics declarations

Competing interests

Z.L., Y.W. and X.Y. are inventors on US. Provisional Patent Application 62/937,055, submitted by Iowa State University. The remaining authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Chen Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Notes 1–3, Figs. 1–36, Tables 1–8,and refs. 1–5,

Supplementary Data 1

Atomic coordinates of optimized structures for DFT calculations conducted in this study

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xiao, Y., Chowdhury, P.R. et al. Direct methane activation by atomically thin platinum nanolayers on two-dimensional metal carbides. Nat Catal 4, 882–891 (2021). https://doi.org/10.1038/s41929-021-00686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00686-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing