Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineering and emerging applications of artificial metalloenzymes with whole cells

Abstract

The field of artificial metalloenzymes (ArMs) is rapidly growing and ArMs are attracting increasing attention, for example, in the fields of biosensing and drug therapy. Protein-engineering methods that are commonly used to tailor the properties of natural enzymes are more frequently included in the design of ArMs. In particular, directed evolution allows the fine-tuning of ArMs, ultimately assisting in the development of their enormous potential. The integration of ArMs in whole cells enables their in vivo application and facilitates high-throughput directed-evolution methodologies. In this Review, we highlight the recent progress of whole-cell conversions and applications of ArMs and critically discuss their limitations and prospects. To focus on ArMs and their specific properties, advantages and challenges, the evolution of natural enzymes for non-natural reactions will not be covered.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Applied strategies for ArM-based targeted cancer therapy.
Fig. 2: Proposed strategies for ArM-based drug therapy.
Fig. 3: ArM-based biosensor.
Fig. 4: Applications of ArMs in synthetic biology and industrial microbiology.
Fig. 5: Schematic representation of the steps required in directed-evolution campaigns of an ArM.
Fig. 6: Strategies for the ArM assembly in different cellular compartments for directed evolution.
Fig. 7: Two approaches for synergistic catalysis within an artificial enzyme.
Fig. 8: Whole-cell applications of ArMs.

References

  1. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    CAS  PubMed  Article  Google Scholar 

  2. Wu, S., Snajdrova, R., Moore, J. C., Baldenius, K. & Bornscheuer, U. T. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 60, 88–119 (2021).

    CAS  Article  Google Scholar 

  3. Hammer, S. C., Knight, A. M. & Arnold, F. H. Design and evolution of enzymes for non-natural chemistry. Curr. Opin. Green. Sus. Chem. 7, 23–30 (2017).

    Google Scholar 

  4. Sheldon, R. A. & Woodley, J. M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 118, 801–838 (2018).

    CAS  PubMed  Article  Google Scholar 

  5. Wei, R. et al. Possibilities and limitations of biotechnological plastic degradation and recycling. Nat. Catal. 3, 867–871 (2020).

    CAS  Article  Google Scholar 

  6. Bornscheuer, U. T., Hauer, B., Jaeger, K. E. & Schwaneberg, U. Directed evolution empowered redesign of natural proteins for the sustainable production of chemicals and pharmaceuticals. Angew. Chem. Int. Ed. 58, 36–40 (2019).

    CAS  Article  Google Scholar 

  7. Sandoval, B. A. & Hyster, T. K. Emerging strategies for expanding the toolbox of enzymes in biocatalysis. Curr. Opin. Chem. Biol. 55, 45–51 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Hyster, T. K. & Ward, T. R. Genetic optimization of metalloenzymes: enhancing enzymes for non-natural reactions. Angew. Chem. Int. Ed. 55, 7344–7357 (2016).

    CAS  Article  Google Scholar 

  9. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    CAS  Article  Google Scholar 

  10. Chauvin, Y. Olefin metathesis: the early days (Nobel Lecture). Angew. Chem. Int. Ed. 45, 3740–3747 (2006).

    Article  CAS  Google Scholar 

  11. Schrock, R. R. Multiple metal–carbon bonds for catalytic metathesis reactions (Nobel Lecture). Angew. Chem. Int. Ed. 45, 3748–3759 (2006).

    CAS  Article  Google Scholar 

  12. Grubbs, R. H. Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel Lecture). Angew. Chem. Int. Ed. 45, 3760–3765 (2006).

    CAS  Article  Google Scholar 

  13. Wilson, M. E. & Whitesides, G. M. Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety. J. Am. Chem. Soc. 100, 306–307 (1978).

    CAS  Article  Google Scholar 

  14. Collot, J. et al. Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin. J. Am. Chem. Soc. 125, 9030–9031 (2003).

    CAS  PubMed  Article  Google Scholar 

  15. Liang, A. D., Serrano-Plana, J., Peterson, R. L. & Ward, T. R. Artificial metalloenzymes based on the biotin-streptavidin technology: enzymatic cascades and directed evolution. Acc. Chem. Res. 52, 585–595 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Ward, T. R. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond. Acc. Chem. Res. 44, 47–57 (2011).

    CAS  PubMed  Article  Google Scholar 

  17. Schwizer, F. et al. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chem. Rev. 118, 142–231 (2018). Comprehensive review giving a balanced overview of artificial metalloenzymes in general.

    CAS  PubMed  Article  Google Scholar 

  18. Markel, U., Sauer, D. F., Schiffels, J., Okuda, J. & Schwaneberg, U. Towards the evolution of artificial metalloenzymes—a protein engineer’s perspective. Angew. Chem. Int. Ed. 58, 4454–4464 (2019).

    CAS  Article  Google Scholar 

  19. Mirts, E. N., Bhagi-Damodaran, A. & Lu, Y. Understanding and modulating metalloenzymes with unnatural amino acids, non-native metal ions, and non-native metallocofactors. Acc. Chem. Res. 52, 935–944 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Lewis, J. C. Beyond the second coordination sphere: engineering dirhodium artificial metalloenzymes to enable protein control of transition metal catalysis. Acc. Chem. Res. 52, 576–584 (2019).

    CAS  PubMed  Article  Google Scholar 

  21. Reetz, M. T. Directed evolution of artificial metalloenzymes: a universal means to tune the selectivity of transition metal catalysts? Acc. Chem. Res. 52, 336–344 (2019).

    CAS  PubMed  Article  Google Scholar 

  22. Roelfes, G. LmrR: a privileged scaffold for artificial metalloenzymes. Acc. Chem. Res. 52, 545–556 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Natoli, S. N. & Hartwig, J. F. Noble−metal substitution in hemoproteins: an emerging strategy for abiological catalysis. Acc. Chem. Res. 52, 326–335 (2019).

    CAS  PubMed  Article  Google Scholar 

  24. Oohora, K., Onoda, A. & Hayashi, T. Hemoproteins reconstituted with artificial metal complexes as biohybrid catalysts. Acc. Chem. Res. 52, 945–954 (2019).

    CAS  PubMed  Article  Google Scholar 

  25. Markel, U. et al. Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem. Soc. Rev. 49, 233–262 (2020).

    CAS  PubMed  Article  Google Scholar 

  26. Bunzel, H. A., Garrabou, X., Pott, M. & Hilvert, D. Speeding up enzyme discovery and engineering with ultrahigh-throughput methods. Curr. Opin. Struct. Biol. 48, 149–156 (2018).

    CAS  PubMed  Article  Google Scholar 

  27. Xiao, H., Bao, Z. & Zhao, H. High throughput screening and selection methods for directed enzyme evolution. Ind. Eng. Chem. Res. 54, 4011–4020 (2015).

    CAS  PubMed  Article  Google Scholar 

  28. Jeschek, M., Panke, S. & Ward, T. R. Artificial metalloenzymes on the verge of new-to-nature metabolism. Trends Biotechnol. 36, 60–72 (2018).

    CAS  PubMed  Article  Google Scholar 

  29. Drienovska, I. & Roelfes, G. Expanding the enzyme universe with genetically encoded unnatural amino acids. Nat. Catal. 3, 193–202 (2020).

    CAS  Article  Google Scholar 

  30. Arnold, F. H. Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed. 57, 4143–4148 (2018).

    CAS  Article  Google Scholar 

  31. Dasari, S. & Tchounwou, P. B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364–378 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Yan, L., Rosen, N. & Arteaga, C. Targeted cancer therapies. Chin. J. Cancer 30, 1–4 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  33. Schilsky, R. L., Allen, J., Benner, J., Sigal, E. & McClellan, M. Commentary: tackling the challenges of developing targeted therapies for cancer. Oncologist 15, 484–487 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  34. Tanaka, K. & Vong, K. Unlocking the therapeutic potential of artificial metalloenzymes. Proc. Jpn Acad. Ser. B 96, 79–94 (2020).

    CAS  Article  Google Scholar 

  35. Lotan, R. & Raz, A. Lectins in cancer cells. Ann. N. Y. Acad. Sci. 551, 385–396 (1988); discussion 396–388 (1988).

    CAS  PubMed  Article  Google Scholar 

  36. Ogura, A. et al. Visualizing trimming dependence of biodistribution and kinetics with homo- and heterogeneous N-glycoclusters on fluorescent albumin. Sci. Rep. 6, 21797 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Zhou, Q. & Qiu, H. The mechanistic impact of N-glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. J. Pharm. Sci. 108, 1366–1377 (2019).

    CAS  PubMed  Article  Google Scholar 

  38. Wang, Z., Zhu, J. & Lu, H. Antibody glycosylation: impact on antibody drug characteristics and quality control. Appl. Microbiol. Biotechnol. 104, 1905–1914 (2020).

    CAS  PubMed  Article  Google Scholar 

  39. Lavie, M., Hanoulle, X. & Dubuisson, J. Glycan shielding and modulation of hepatitis C virus neutralizing antibodies. Front. Immunol. 9, 910 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. Eda, S. et al. Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes. Nat. Catal. 2, 780–792 (2019). A glycosylated artificial metalloenzyme catalysing olefin metathesis for the conversion of a prodrug into a drug to tackle cancer cells.

    CAS  Article  Google Scholar 

  41. Wilson, Y. M., Durrenberger, M., Nogueira, E. S. & Ward, T. R. Neutralizing the detrimental effect of glutathione on precious metal catalysts. J. Am. Chem. Soc. 136, 8928–8932 (2014).

    CAS  PubMed  Article  Google Scholar 

  42. Tsubokura, K. et al. In vivo gold complex catalysis within live mice. Angew. Chem. Int. Ed. 56, 3579–3584 (2017).

    CAS  Article  Google Scholar 

  43. Arndt, N. X., Tiralongo, J., Madge, P. D., von Itzstein, M. & Day, C. J. Differential carbohydrate binding and cell surface glycosylation of human cancer cell lines. J. Cell. Biochem. 112, 2230–2240 (2011).

    CAS  PubMed  Article  Google Scholar 

  44. Chang, T.-C., Vong, K., Yamamoto, T. & Tanaka, K. Prodrug activation by gold artificial metalloenzyme-catalyzed synthesis of phenanthridinium derivatives via hydroamination. Angew. Chem. Int. Ed. 22, 12446–12454 (2020).

    Google Scholar 

  45. Gao, L. et al. An artificial metalloenzyme for catalytic cancer-specific DNA cleavage and operando imaging. Sci. Adv. 6, eabb1421 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Danhier, F., Le Breton, A. & Préat, V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharm. 9, 2961–2973 (2012).

    CAS  PubMed  Article  Google Scholar 

  47. Kemker, I., Feiner, R. C., Müller, K. M. & Sewald, N. Size-dependent cellular uptake of RGD peptides. ChemBioChem 21, 496–499 (2020).

    CAS  PubMed  Article  Google Scholar 

  48. Ghattas, W. et al. Receptor-based artificial metalloenzymes on living human cells. J. Am. Chem. Soc. 140, 8756–8762 (2018). An artificial metalloenzyme assembled on the surface of human cells for Diels–Alder reactions.

  49. Franco, R. & Navarro, G. Adenosine A2A receptor antagonists in neurodegenerative diseases: huge potential and huge challenges. Front. Psychiatry 9, 68 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  50. Yu, F., Zhu, C., Xie, Q. & Wang, Y. Adenosine A2A receptor antagonists for cancer immunotherapy. J. Med. Chem. 63, 12196–12212 (2020).

    CAS  PubMed  Article  Google Scholar 

  51. Congreve, M., Brown, G. A., Borodovsky, A. & Lamb, M. L. Targeting adenosine A2A receptor antagonism for treatment of cancer. Expert Opin. Drug Discov. 13, 997–1003 (2018).

    CAS  PubMed  Article  Google Scholar 

  52. Szponarski, M., Schwizer, F., Ward, T. R. & Gademann, K. On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme. Commun. Chem. 1, 84 (2018).

    Article  CAS  Google Scholar 

  53. Andrady, C., Sharma, S. K. & Chester, K. A. Antibody–enzyme fusion proteins for cancer therapy. Immunotherapy 3, 193–211 (2011).

    CAS  PubMed  Article  Google Scholar 

  54. Osipovitch, D. C. et al. Design and analysis of immune-evading enzymes for ADEPT therapy. Protein Eng. Des. Sel. 25, 613–623 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Schellekens, H. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat. Rev. Drug Discov. 1, 457–462 (2002).

    CAS  PubMed  Article  Google Scholar 

  56. Mahy, J. P., Marechal, J. D. & Ricoux, R. From “hemoabzymes” to “hemozymes”: towards new biocatalysts for selective oxidations. Chem. Commun. 51, 2476–2494 (2015).

    CAS  Article  Google Scholar 

  57. Ricoux, R., Sauriat-Dorizon, H., Girgenti, E., Blanchard, D. & Mahy, J. P. Hemoabzymes: towards new biocatalysts for selective oxidations. J. Immunol. Methods 269, 39–57 (2002). d.

    CAS  PubMed  Article  Google Scholar 

  58. Kakinuma, H., Fujii, I. & Nishi, Y. Selective chemotherapeutic strategies using catalytic antibodies: a common pro-moiety for antibody-directed abzyme prodrug therapy. J. Immunol. Methods 269, 269–281 (2002).

    CAS  PubMed  Article  Google Scholar 

  59. Miyashita, H., Karaki, Y., Kikuchi, M. & Fujii, I. Prodrug activation via catalytic antibodies. Proc. Natl Acad. Sci. USA 90, 5337–5340 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Nishi, Y. Enzyme/abzyme prodrug activation systems: potential use in clinical oncology. Curr. Pharm. Des. 9, 2113–2130 (2003).

    CAS  PubMed  Article  Google Scholar 

  61. Wentworth, P. et al. Toward antibody-directed “abzyme” prodrug therapy, ADAPT: carbamate prodrug activation by a catalytic antibody and its in vitro application to human tumor cell killing. Proc. Natl Acad. Sci. USA 93, 799–803 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Bhalla, N., Jolly, P., Formisano, N. & Estrela, P. Introduction to biosensors. Essays Biochem. 60, 1–8 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  63. Mehrotra, P. Biosensors and their applications—a review. J. Oral. Biol. Craniofac. Res. 6, 153–159 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  64. Rocchitta, G. et al. Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids. Sensors 16, 780 (2016).

    PubMed Central  Article  CAS  Google Scholar 

  65. Vial, L. & Dumy, P. Artificial enzyme-based biosensors. New J. Chem. 33, 939–946 (2009).

    CAS  Article  Google Scholar 

  66. Vong, K. et al. An artificial metalloenzyme biosensor can detect ethylene gas in fruits and Arabidopsis leaves. Nat. Commun. 10, 5746 (2019). An artificial metalloenzyme catalysing olefin metathesis to detect ethylene in fruit and leaf cuts.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Schrum, J. P., Zhu, T. F. & Szostak, J. W. The origins of cellular life. Cold Spring Harb. Perspect. Biol. 2, a002212 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. Kurihara, K. et al. A recursive vesicle-based model protocell with a primitive model cell cycle. Nat. Commun. 6, 8352 (2015).

    CAS  PubMed  Article  Google Scholar 

  69. Mansy, S. S. & Szostak, J. W. Reconstructing the emergence of cellular life through the synthesis of model protocells. Cold Spring Harb. Symp. Quant. Biol. 74, 47–54 (2009).

    CAS  PubMed  Article  Google Scholar 

  70. Brotchie, A. Synthetic biology: phagocytic protocells. Nat. Rev. Mat. 2, 17041 (2017).

    Article  Google Scholar 

  71. Samanta, A., Sabatino, V., Ward, T. R. & Walther, A. Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes. Nat. Nanotechnol. 15, 914–921 (2020). An artificial metalloenzyme catalysing olefin metathesis within a DNA protocell, thereby influencing the properties of the protocell.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Jusiak, B., Cleto, S., Perez-Piñera, P. & Lu, T. K. Engineering synthetic gene circuits in living cells with CRISPR technology. Trends Biotechnol. 34, 535–547 (2016).

    CAS  PubMed  Article  Google Scholar 

  73. Müller, I. E. et al. Gene networks that compensate for crosstalk with crosstalk. Nat. Commun. 10, 4028 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  74. Okamoto, Y. et al. A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell. Nat. Commun. 9, 1943 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. Beloqui, A., de María, P. D., Golyshin, P. N. & Ferrer, M. Recent trends in industrial microbiology. Curr. Opin. Microbiol. 11, 240–248 (2008).

    CAS  PubMed  Article  Google Scholar 

  76. Rudroff, F. et al. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 1, 12–22 (2018).

    Article  Google Scholar 

  77. Mertens, M. A. S. et al. Chemoenzymatic cascade for stilbene production from cinnamic acid catalyzed by ferulic acid decarboxylase and an artificial metathease. Catal. Sci. Tech. 9, 5572–5576 (2019).

    CAS  Article  Google Scholar 

  78. Sauer, D. F. et al. Biohybrid catalysts for sequential one-pot reactions based on an engineered transmembrane protein. Catal. Sci. Tech. 9, 942–946 (2019).

    CAS  Article  Google Scholar 

  79. Jarvis, A. G. Designer metalloenzymes for synthetic biology: enzyme hybrids for catalysis. Curr. Opin. Chem. Biol. 58, 63–71 (2020).

    CAS  PubMed  Article  Google Scholar 

  80. Wu, S., Zhou, Y., Gerngross, D., Jeschek, M. & Ward, T. R. Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources. Nat. Commun. 10, 5060 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. Wallace, S. & Balskus, E. P. Designer micelles accelerate flux through engineered metabolism in E. coli and support biocompatible chemistry. Angew. Chem. Int. Ed. 55, 6023–6027 (2016).

    CAS  Article  Google Scholar 

  82. Sharma, S. V. et al. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo. Nat. Commun. 8, 229 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. Maaskant, R. V., Chordia, S. & Roelfes, G. Merging whole-cell biosynthesis of styrene and transition-metal catalyzed derivatization reactions. ChemCatChem 13, 1607–1613 (2021).

    CAS  Article  Google Scholar 

  84. Bartolami, E. et al. Diselenolane-mediated cellular uptake: efficient cytosolic delivery of probes, peptides, proteins, artificial metalloenzymes and protein-coated quantum dots. Chem. Eur. J. 25, 4047–4051 (2019).

    CAS  PubMed  Article  Google Scholar 

  85. Lopez-Andarias, J. et al. Cell-penetrating streptavidin: a general tool for bifunctional delivery with spatiotemporal control, mediated by transport systems such as adaptive benzopolysulfane networks. J. Am. Chem. Soc. 142, 4784–4792 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Huang, J. et al. aArtificial biosynthetic pathway for an unnatural terpenoid with an iridium-containing P450. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.11955174.v1 (2020).

  87. Oohora, K., Kihira, Y., Mizohata, E., Inoue, T. & Hayashi, T. C(sp3)–H bond hydroxylation catalyzed by myoglobin reconstituted with manganese porphycene. J. Am. Chem. Soc. 135, 17282–17285 (2013).

    CAS  PubMed  Article  Google Scholar 

  88. Key, H. M., Dydio, P., Clark, D. S. & Hartwig, J. F. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature 534, 534–537 (2016).

    CAS  PubMed  Article  Google Scholar 

  89. Kawakami, N., Shoji, O. & Watanabe, Y. Single-step reconstitution of apo-hemoproteins at the disruption stage of Escherichia coli cells. ChemBioChem 13, 2045–2047 (2012).

    CAS  PubMed  Article  Google Scholar 

  90. Gu, Y., Natoli, S. N., Liu, Z., Clark, D. S. & Hartwig, J. F. Site-selective functionalization of (sp3)C–H bonds catalyzed by artificial metalloenzymes containing an iridium-porphyrin cofactor. Angew. Chem. Int. Ed. 58, 13954–13960 (2019).

    CAS  Article  Google Scholar 

  91. Reynolds, E. W., Schwochert, T. D., McHenry, M. W., Watters, J. W. & Brustad, E. M. Orthogonal expression of an artificial metalloenzyme for abiotic catalysis. ChemBioChem 18, 2380–2384 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Bordeaux, M., Singh, R. & Fasan, R. Intramolecular C(sp3)H amination of arylsulfonyl azides with engineered and artificial myoglobin-based catalysts. Bioorg. Med. Chem. 22, 5697–5704 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Sreenilayam, G., Moore, E. J., Steck, V. & Fasan, R. Metal substitution modulates the reactivity and extends the reaction scope of myoglobin carbene transfer catalysts. Adv. Synth. Catal. 359, 2076–2089 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Jeschek, M. et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016). An artificial metalloenzyme catalysing olefin metathesis within the periplasm of E. coli, which was used to perform a directed evolution campain in vivo.

    CAS  PubMed  Article  Google Scholar 

  95. Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J. & Salemme, F. R. Structural origins of high-affinity biotin binding to streptavidin. Science 243, 85–88 (1989).

    CAS  PubMed  Article  Google Scholar 

  96. Zhao, J. M., Bachmann, D. G., Lenz, M., Gillingham, D. G. & Ward, T. R. An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin. Catal. Sci. Tech. 8, 2294–2298 (2018).

    CAS  Article  Google Scholar 

  97. Yang, H. et al. Evolving artificial metalloenzymes via random mutagenesis. Nat. Chem. 10, 318–324 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Zhao, J. et al. Genetic engineering of an artificial metalloenzyme for transfer hydrogenation of a self-immolative substrate in Escherichia coli’s periplasm. J. Am. Chem. Soc. 140, 13171–13175 (2018).

    CAS  PubMed  Article  Google Scholar 

  99. Wang, Q. & Franz, K. J. Stimulus-responsive prochelators for manipulating cellular metals. Acc. Chem. Res. 49, 2468–2477 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Alouane, A., Labruere, R., Le Saux, T., Schmidt, F. & Jullien, L. Self-immolative spacers: kinetic aspects, structure–property relationships, and applications. Angew. Chem. Int. Ed. 54, 7492–7509 (2015).

    CAS  Article  Google Scholar 

  101. Vornholt, T. et al. Systematic engineering of artificial metalloenzymes for new-to-nature reactions. Sci. Adv. 7, eabe4208 (2021).

    CAS  PubMed  Article  Google Scholar 

  102. Obexer, R., Pott, M., Zeymer, C., Griffiths, A. D. & Hilvert, D. Efficient laboratory evolution of computationally designed enzymes with low starting activities using fluorescence-activated droplet sorting. Protein Eng. Des. Sel. 30, 531–531 (2017).

    CAS  PubMed  Article  Google Scholar 

  103. Brodin, J. D. et al. Evolution of metal selectivity in templated protein interfaces. J. Am. Chem. Soc. 132, 8610–8617 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Song, W. J. & Tezcan, F. A. A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346, 1525–1528 (2014). Design and evolution of an artificial metalloenzyme for the hydrolysis of β-lactams in the periplasm of E. coli through the design of protein interfaces.

    CAS  PubMed  Article  Google Scholar 

  105. Song, W. J., Yu, J. & Tezcan, F. A. Importance of scaffold flexibility/rigidity in the design and directed evolution of artificial metallo-β-lactamases. J. Am. Chem. Soc. 139, 16772–16779 (2017).

    CAS  PubMed  Article  Google Scholar 

  106. Rittle, J., Field, M. J., Green, M. T. & Tezcan, F. A. An efficient, step-economical strategy for the design of functional metalloproteins. Nat. Chem. 11, 434–441 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Francisco, J. A., Earhart, C. F. & Georgiou, G. Transport and anchoring of beta-lactamase to the external surface of Escherichia coli. Proc. Natl Acad. Sci. USA 89, 2713–2717 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. Gai, S. A. & Wittrup, K. D. Yeast surface display for protein engineering and characterization. Curr. Opin. Struct. Biol. 17, 467–473 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Becker, S. et al. A generic system for the Escherichia coli cell-surface display of lipolytic enzymes. FEBS Lett. 579, 1177–1182 (2005).

    CAS  PubMed  Article  Google Scholar 

  110. Grimm, A. R. et al. A Whole cell E. coli display platform for artificial metalloenzymes: poly(phenylacetylene) production with a rhodium-nitrobindin metalloprotein. ACS Catal. 8, 2611–2614 (2018). An early example of an E. coli cell-surface displayed artificial metalloenzyme catalysing the polymerization of phenyl acetylene.

  111. Himiyama, T. et al. Construction of a hybrid biocatalyst containing a covalently-linked terpyridine metal complex within a cavity of aponitrobindin. J. Inorg. Biochem. 158, 55–61 (2016).

    CAS  PubMed  Article  Google Scholar 

  112. Himiyama, T., Taniguchi, N., Kato, S., Onoda, A. & Hayashi, T. A pyrene-linked cavity within a β-barrel protein promotes an asymmetric Diels–Alder reaction. Angew. Chem. Int. Ed. 56, 13618–13622 (2017).

    CAS  Article  Google Scholar 

  113. Zhang, C., Srivastava, P., Ellis-Guardiola, K. & Lewis, J. C. Manganese terpyridine artificial metalloenzymes for benzylic oxygenation and olefin epoxidation. Tetrahedron 70, 4245–4249 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Onoda, A., Kihara, Y., Fukumoto, K., Sano, Y. & Hayashi, T. Photoinduced hydrogen evolution catalyzed by a synthetic diiron dithiolate complex embedded within a protein matrix. ACS Catal. 4, 2645–2648 (2014).

    CAS  Article  Google Scholar 

  115. Sauer, D. F., Gotzen, S. & Okuda, J. Metatheases: artificial metalloproteins for olefin metathesis. Org. Biomol. Chem. 14, 9174–9183 (2016).

    CAS  PubMed  Article  Google Scholar 

  116. Sauer, D. F. et al. A highly active biohybrid catalyst for olefin metathesis in water: impact of a hydrophobic cavity in a β-barrel protein. ACS Catal. 5, 7519–7522 (2015).

  117. Grimm, A. R. et al. Cavity size engineering of a β-barrel protein generates efficient biohybrid catalysts for olefin metathesis. ACS Catal. 8, 3358–3364 (2018).

    CAS  Article  Google Scholar 

  118. Sauer, D. F., Schiffels, J., Hayashi, T., Schwaneberg, U. & Okuda, J. Olefin metathesis catalysts embedded in β-barrel proteins: creating artificial metalloproteins for olefin metathesis. Beilstein J. Org. Chem. 14, 2861–2871 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. Onoda, A. et al. A rhodium complex-linked β-barrel protein as a hybrid biocatalyst for phenylacetylene polymerization. Chem. Commun. 48, 9756–9758 (2012).

    CAS  Article  Google Scholar 

  120. Fukumoto, K. et al. Rhodium-complex-linked hybrid biocatalyst: stereo-controlled phenylacetylene polymerization within an engineered protein cavity. ChemCatChem 6, 1229–1235 (2014).

    CAS  Google Scholar 

  121. Kato, S., Onoda, A., Grimm, A. R., Schwaneberg, U. & Hayashi, T. Construction of a whole-cell biohybrid catalyst using a Cp*Rh(III)-dithiophosphate complex as a precursor of a metal cofactor. J. Inorg. Biochem. 216, 111352 (2021).

    CAS  PubMed  Article  Google Scholar 

  122. Kato, S. et al. Incorporation of a Cp*Rh(III)-dithiophosphate cofactor with latent activity into a protein scaffold generates a biohybrid catalyst promoting C(sp2)–H bond functionalization. Inorg. Chem. 59, 14457–14463 (2020).

    CAS  PubMed  Article  Google Scholar 

  123. Kato, S., Onoda, A., Taniguchi, N., Schwaneberg, U. & Hayashi, T. Directed evolution of a Cp*Rh(III) -linked biohybrid catalyst based on a screening platform with affinity purification. ChemBioChem 22, 679–685 (2021).

    CAS  PubMed  Article  Google Scholar 

  124. Heinisch, T. et al. E. coli surface display of streptavidin for directed evolution of an allylic deallylase. Chem. Sci. 9, 5383–5388 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. Rebelein, J. G., Cotelle, Y., Garabedian, B. & Ward, T. R. Chemical optimization of whole-cell transfer hydrogenation using carbonic anhydrase as host protein. ACS Catal. 9, 4173–4178 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. Cornelis, P. Expressing genes in different Escherichia coli compartments. Curr. Opin. Biotechnol. 11, 450–454 (2000).

    CAS  PubMed  Article  Google Scholar 

  127. Chordia, S., Narasimhan, S., Lucini Paioni, A., Baldus, M. & Roelfes, G. In vivo assembly of artificial metalloenzymes and application in whole-cell biocatalysis. Angew. Chem. Int. Ed. 60, 5913–5920 (2021). Assembly of an artificial metalloenzyme in the cytoplasm of E. coli catalysing Diels–Alder and Friedel–Crafts reactions.

  128. Bos, J., Browne, W. R., Driessen, A. J. M. & Roelfes, G. Supramolecular assembly of artificial metalloenzymes based on the dimeric protein LmrR as promiscuous scaffold. J. Am. Chem. Soc. 137, 9796–9799 (2015).

    CAS  PubMed  Article  Google Scholar 

  129. Zhou, Z. & Roelfes, G. Synergistic catalysis in an artificial enzyme by simultaneous action of two abiological catalytic sites. Nat. Catal. 3, 289–294 (2020). Construction of an artificial metalloenzyme for synergistic catalysis through incorporation of two active sites: a metal complex and a non-canonical amino acid.

  130. Alonso, S. et al. Genetically engineered proteins with two active sites for enhanced biocatalysis and synergistic chemo- and biocatalysis. Nat. Catal. 3, 319–328 (2020).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG) through the International Research Training Group ‘Selectivity in Chemo- and Biocatalysis’ (SeleCa) (IRTG 1628) and the Bundesministerium für Bildung und Forschung (BMBF) (FKZ: 031B0297) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

D.F.S. conceptualized the review. M.W., U.M. and D.F.S. drafted the review. M.W., U.M., J.S., J.O., D.F.S. and U.S. critically revised the review. J.O. and U.S. acquired funding. M.W. and U.M. contributed equally to this work.

Corresponding authors

Correspondence to Daniel F. Sauer or Ulrich Schwaneberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Jean-Pierre Mahy, Katsunori Tanaka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wittwer, M., Markel, U., Schiffels, J. et al. Engineering and emerging applications of artificial metalloenzymes with whole cells. Nat Catal 4, 814–827 (2021). https://doi.org/10.1038/s41929-021-00673-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00673-3

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing