Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

α-Fe2O3 as a versatile and efficient oxygen atom transfer catalyst in combination with H2O as the oxygen source

Abstract

Haematite (α-Fe2O3) has been extensively investigated as a photoanode in photoelectrochemical water oxidation, but the product O2 has a low economic value. Here we expand its applications to the production of value-added chemicals and report its ability to act as a versatile and efficient oxygen atom transfer catalyst under visible-light irradiation. A variety of organic compounds and inorganic anions were successfully oxidized to the corresponding monooxygenation products with high selectivity and Faradaic efficiency by using water as the sole oxygen source. Photoexcited holes generate iron–oxo species (FeIV=O) on α-Fe2O3 surfaces and the process of oxygen-atom transfer is proposed to proceed via a concerted two-hole transfer pathway that involves the transfer of oxygen atoms from the surface FeIV=O to the substrates. The present study proves α-Fe2O3 is an excellent all-inorganic heterogeneous catalyst to drive oxygen atom transfer reactions, and this strategy has significant potential for the synthesis of fine and high-value-added chemicals.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Linear sweep voltammetry and photoelectrolysis experiments of MPS oxidation.
Fig. 2: pKa values and structural diagrams.
Fig. 3: Mass spectra of MPSO.
Fig. 4: Surface-hole trapping states based on EIS data.
Fig. 5: PEC OAT reactions with H2O as an oxygen atom source on α-Fe2O3.

Data availability

The data that support the findings of this study, which include photoanode preparation, experimental procedures, material characterization, product analysis and computational details are available in the accompanying Supplementary Information or from the authors upon reasonable request. Source data are provided with this paper.

References

  1. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    PubMed  Article  Google Scholar 

  2. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    CAS  PubMed  Article  Google Scholar 

  3. Wang, S., Liu, G. & Wang, L. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119, 5192–5247 (2019).

    CAS  PubMed  Article  Google Scholar 

  4. Zeng, Q. et al. Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation. Appl. Catal. B 217, 21–29 (2017).

    CAS  Article  Google Scholar 

  5. Li, T. et al. Photoelectrochemical oxidation of organic substrates in organic media. Nat. Commun. 8, 390 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. Tateno, H., Iguchi, S., Miseki, Y. & Sayama, K. Photo-electrochemical C–H bond activation of cyclohexane using a WO3 photoanode and visible light. Angew. Chem. Int. Ed. 57, 11238–11241 (2018).

    CAS  Article  Google Scholar 

  7. Xiong, P. & Xu, H.-C. Chemistry with electrochemically generated N-centered radicals. Acc. Chem. Res. 52, 3339–3350 (2019).

    CAS  PubMed  Article  Google Scholar 

  8. Yuan, Y. & Lei, A. Electrochemical oxidative cross-coupling with hydrogen evolution reactions. Acc. Chem. Res. 52, 3309–3324 (2019).

    CAS  PubMed  Article  Google Scholar 

  9. Lum, Y. et al. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. Nat. Catal. 3, 14–22 (2020).

    CAS  Article  Google Scholar 

  10. Zhang, P., Wang, Y., Li, H. & Antonietti, M. Metal-free oxidation of sulfides by carbon nitride with visible light illumination at room temperature. Green Chem. 14, 1904–1908 (2012).

    CAS  Article  Google Scholar 

  11. Zhang, B. et al. Selective oxidation of sulfides on Pt/BiVO4 photocatalyst under visible light irradiation using water as the oxygen source and dioxygen as the electron acceptor. J. Catal. 332, 95–100 (2015).

    CAS  Article  Google Scholar 

  12. Zandi, O. & Hamann, T. W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat. Chem. 8, 778–783 (2016).

    CAS  PubMed  Article  Google Scholar 

  13. Zhang, Y. et al. Rate-limiting O–O bond formation pathways for water oxidation on hematite photoanode. J. Am. Chem. Soc. 140, 3264–3269 (2018).

    CAS  PubMed  Article  Google Scholar 

  14. Cha, H. G. & Choi, K. S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 7, 328–333 (2015).

    CAS  PubMed  Article  Google Scholar 

  15. Lhermitte, C. R. & Sivula, K. Alternative oxidation reactions for solar-driven fuel production. ACS Catal. 9, 2007–2017 (2019).

    CAS  Article  Google Scholar 

  16. Zhang, L. et al. Photoelectrocatalytic arene C–H amination. Nat. Catal. 2, 266–373 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  17. Cummings, C. Y., Marken, F., Peter, L. M., Wijayantha, K. G. & Tahir, A. A. New insights into water splitting at mesoporous α-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies. J. Am. Chem. Soc. 134, 1228–1234 (2012).

    CAS  PubMed  Article  Google Scholar 

  18. Chen, L. X., Liu, T., Thurnauer, M. C., Csencsits, R. & Rajh, T. Fe2O3 nanoparticle structures investigated by X-ray absorption near-edge structure, surface modifications, and model calculations. J. Phys. Chem. B 106, 8539–8546 (2002).

    CAS  Article  Google Scholar 

  19. Kronawitter, C. X. et al. Electron enrichment in 3d transition metal oxide hetero-nanostructures. Nano Lett. 11, 3855–3861 (2011).

    CAS  PubMed  Article  Google Scholar 

  20. Braun, A. et al. Direct observation of two electron holes in a hematite photoanode during photoelectrochemical water splitting. J. Phys. Chem. C 116, 16870–16875 (2012).

    CAS  Article  Google Scholar 

  21. Kumar, A., Goldberg, I., Botoshansky, M., Buchman, Y. & Gross, Z. Oxygen atom transfer reactions from isolated (oxo)manganese(V) corroles to sulfides. J. Am. Chem. Soc. 132, 15233–15245 (2010).

    CAS  PubMed  Article  Google Scholar 

  22. Lionetti, D. et al. Effects of Lewis acidic metal ions (M) on oxygen-atom transfer reactivity of heterometallic Mn3MO4 cubane and Fe3MO(OH) and Mn3MO(OH) clusters. Inorg. Chem. 58, 2336–2345 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Paudel, J., Pokhrel, A., Kirk, M. L. & Li, F. Remote charge effects on the oxygen-atom-transfer reactivity and their relationship to molybdenum enzymes. Inorg. Chem. 58, 2054–2068 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Li, Y. et al. Selective late-stage oxygenation of sulfides with ground-state oxygen by uranyl photocatalysis. Angew. Chem. Int. Ed. 58, 13499–13506 (2019).

    CAS  Article  Google Scholar 

  25. Jin, K. et al. Epoxidation of cyclooctene using water as the oxygen atom source at manganese oxide electrocatalysts. J. Am. Chem. Soc. 141, 6413–6418 (2019).

    CAS  PubMed  Article  Google Scholar 

  26. Peariso, K., McNaughton, R. L. & Kirk, M. L. Active-site stereochemical control of oxygen atom transfer reactivity in sulfite oxidase. J. Am. Chem. Soc. 124, 9006–9007 (2002).

    CAS  PubMed  Article  Google Scholar 

  27. McGarrigle, E. M. & Gilheany, D. G. Chromium− and manganese−salen promoted epoxidation of alkenes. Chem. Rev. 105, 1563–1602 (2005).

    CAS  PubMed  Article  Google Scholar 

  28. Avenier, F. et al. Photoassisted generation of a dinuclear iron(III) peroxo species and oxygen-atom transfer. Angew. Chem. Int. Ed. 52, 3634–3637 (2013).

    CAS  Article  Google Scholar 

  29. Kang, Y. et al. Mutable properties of nonheme iron(III)–iodosylarene complexes result in the elusive multiple-oxidant mechanism. J. Am. Chem. Soc. 139, 7444–7447 (2017).

    CAS  PubMed  Article  Google Scholar 

  30. Serrano-Plana, J. et al. Exceedingly fast oxygen atom transfer to olefins via a catalytically competent nonheme iron species. Angew. Chem. Int. Ed. 55, 6310–6314 (2016).

    CAS  Article  Google Scholar 

  31. Ling, Y., Wang, G., Wheeler, D. A., Zhang, J. Z. & Li, Y. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11, 2119–2125 (2011).

    CAS  PubMed  Article  Google Scholar 

  32. Goto, Y., Matsui, T., Ozaki, S.-I., Watanabe, Y. & Fukuzumi, S. Mechanisms of sulfoxidation catalyzed by high-valent intermediates of heme enzymes: electron-transfer vs oxygen-transfer mechanism. J. Am. Chem. Soc. 121, 9497–9502 (1999).

    CAS  Article  Google Scholar 

  33. Li, Y., Wang, M. & Jiang, X. Controllable sulfoxidation and sulfenylation with organic thiosulfate salts via dual electron- and energy-transfer photocatalysis. ACS Catal. 7, 7587–7592 (2017).

    CAS  Article  Google Scholar 

  34. Chen, X. & Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007).

    CAS  PubMed  Article  Google Scholar 

  35. Nosaka, Y. & Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017).

    CAS  PubMed  Article  Google Scholar 

  36. Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

    CAS  Article  Google Scholar 

  37. Badalyan, A. & Stahl, S. S. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. Nature 535, 406–410 (2016).

    CAS  PubMed  Article  Google Scholar 

  38. Engelmann, X. et al. Trapping of a highly reactive oxoiron(IV) complex in the catalytic epoxidation of olefins by hydrogen peroxide. Angew. Chem. Int. Ed. 58, 4012–4016 (2019).

    CAS  Article  Google Scholar 

  39. Lee, Y. M. et al. Direct oxygen atom transfer versus electron transfer mechanisms in the phosphine oxidation by nonheme Mn(IV)–oxo complexes. Chem. Commun. 53, 9352–9355 (2017).

    CAS  Article  Google Scholar 

  40. Man, W.-L., Lam, W. W. Y., Wong, W.-Y. & Lau, T.-C. Oxidation of nitrite by a trans-dioxoruthenium(VI) complex: direct evidence for reversible oxygen atom transfer. J. Am. Chem. Soc. 128, 14669–14675 (2006).

    CAS  PubMed  Article  Google Scholar 

  41. Wang, Z., Bush, R. T., Sullivan, L. A., Chen, C. & Liu, J. Selective oxidation of arsenite by peroxymonosulfate with high utilization efficiency of oxidant. Environ. Sci. Technol. 48, 3978–3985 (2014).

    CAS  PubMed  Article  Google Scholar 

  42. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Hamann, T. & Bisquert, J. Water oxidation at hematite photoelectrodes: the role of surface states. J. Am. Chem. Soc. 134, 4294–4302 (2012).

    CAS  PubMed  Article  Google Scholar 

  43. Le Formal, F. et al. Rate law analysis of water oxidation on a hematite surface. J. Am. Chem. Soc. 137, 6629–6637 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. Mesa, C. A. et al. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat. Chem. 12, 82–89 (2020).

    CAS  PubMed  Article  Google Scholar 

  45. Yatom, N., Neufeld, O. & Caspary Toroker, M. Toward settling the debate on the role of Fe2O3 surface states for water splitting. J. Phys. Chem. C 119, 24789–24795 (2015).

    CAS  Article  Google Scholar 

  46. Kundu, S., Thompson, J. V., Ryabov, A. D. & Collins, T. J. On the reactivity of mononuclear iron(V)oxo complexes. J. Am. Chem. Soc. 133, 18546–18549 (2011).

    CAS  PubMed  Article  Google Scholar 

  47. Singh, K. K., Tiwari, M. K., Dhar, B. B., Vanka, K. & Gupta, S. S. Mechanism of oxygen atom transfer from FeV(O) to olefins at room temperature. Inorg. Chem. 54, 6112–6121 (2015).

    CAS  PubMed  Article  Google Scholar 

  48. Lim, M. H. et al. An FeIV=O complex of a tetradentate tripodal nonheme ligand. Proc. Natl Acad. Sci. USA 100, 3665–3670 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS  Article  Google Scholar 

  50. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Article  Google Scholar 

  51. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    CAS  Article  Google Scholar 

  52. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  53. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  54. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  PubMed  Google Scholar 

  55. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    CAS  Article  Google Scholar 

  56. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  57. Mosey, N. J., Liao, P. & Carter, E. A. Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. J. Chem. Phys. 129, 014103 (2008).

    PubMed  Article  CAS  Google Scholar 

  58. Ji, Y., Fan, T. & Luo, Y. First-principles study on the mechanism of photocatalytic reduction of nitrobenzene on the rutile TiO2(110) surface. Phys. Chem. Chem. Phys. 22, 1187–1193 (2019).

    PubMed  Article  Google Scholar 

  59. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed  Article  CAS  Google Scholar 

  60. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  PubMed  Article  Google Scholar 

  61. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  62. Finger, L. W. & Hazen, R. M. Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars. J. Appl. Phys. 51, 5362–5367 (1980).

    CAS  Article  Google Scholar 

  63. Hanaor, D. A. H. & Sorrell, C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855–874 (2011).

    CAS  Article  Google Scholar 

  64. Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a pre- and post-processing program for VASP code. Cond. Mat. Mater. Sci. 267, 108033 (2021).

    CAS  Google Scholar 

  65. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  66. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, grant no. XDB36000000, NSFC (nos. 21777168, 21827809 and 22072158) and the ‘National Key R&D Program of China’ (nos. 2018YFA0209302 and 2020YFC1808401).

Author information

Authors and Affiliations

Authors

Contributions

Y. Zhao and C.C. conceived and designed the experiments. Y. Zhao performed most of the experiments. C.D. prepared α-Fe2O3 and contributed the DFT work. D.T. reproduced the results of MPS photoelectrolysis experimental data. L.D. measured and analysed the scanning electron microscopy data. Y. Zhao, C.D., D.T., L.D., Y. Zhang, H.S., H.J., W.S., W.M., C.C. and J.Z. analysed the results and reviewed the paper. C.C., Y. Zhao. and Y. Zhang wrote the paper, with input from the other authors. C.C. directed the project.

Corresponding authors

Correspondence to Yuchao Zhang, Chuncheng Chen or Jincai Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Victor Batista, Alberto Vomiero, Li-Zhu Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, Figs. 1–29, Tables 1–7 and References.

Supplementary Data 1

Model for Figure S27b(α-Fe2O3).

Supplementary Data 2

Model for Figure S27b(TiO2).

Supplementary Data 3

Model for FeIII-FeIII.

Supplementary Data 4

Model for FeIII-FeIV.

Supplementary Data 5

Model for FeIV-FeIV.

Supplementary Data 6

Model for FeV-FeIII-1.

Supplementary Data 7

Model for FeV-FeIII-2.

Supplementary Data 8

Electronic structure calculations.

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 4

Statistical Source Data.

Source Data Table 1

Statistical Source Data for Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Deng, C., Tang, D. et al. α-Fe2O3 as a versatile and efficient oxygen atom transfer catalyst in combination with H2O as the oxygen source. Nat Catal 4, 684–691 (2021). https://doi.org/10.1038/s41929-021-00659-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00659-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing