Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulating oxygen activity of perovskites to promote NOx oxidation and reduction kinetics


Understanding the adsorption and oxidation of NO on metal oxides is of immense interest to environmental and atmospheric (bio)chemistry. Here, we show that the surface oxygen activity, defined as the oxygen 2p-band centre relative to the Fermi level, dictates the adsorption and surface coverage of NOx and the kinetics of NO oxidation for La1−xSrxCoO3 perovskites. Density functional theory and ambient-pressure X-ray photoelectron spectroscopy revealed favourable NO adsorption on surface oxygen sites. Increasing the surface oxygen activity by increasing the strontium substitution led to stronger adsorption and greater storage of NO2, which resulted in more adsorbed nitrogen-like species and molecular nitrogen formed upon exposure to CO. The NO oxidation kinetics exhibited a volcano trend with surface oxygen activity, centred at La0.8Sr0.2CoO3 and with an intrinsic activity comparable to state-of-the-art catalysts. We rationalize the volcano trend by showing that increasing the NO adsorption enhances the oxidation kinetics, although NO adsorption that is too strong poisons the surface oxygen sites with adsorbed NO2 to impede the kinetics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: NOx adsorption energetics on La1−xSrxCoO3 surfaces.
Fig. 2: AP-XPS of NO and O2 on (001)-oriented La0.8Sr0.2CoO3.
Fig. 3: Isothermal and isobaric surface reactivity of NO and O2 on La1−xSrxCoO3.
Fig. 4: NOx reduction on La1−xSrxCoO3 thin films under CO.
Fig. 5: NO oxidation activity and reaction mechanism on La1−xSrxCoO3.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    Delwiche, C. C. The nitrogen cycle. Sci. Am. 223, 136–147 (1970).

    Article  Google Scholar 

  3. 3.

    Lundberg, J. O., Weitzberg, E. & Gladwin, M. T. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 7, 156–167 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Shiva, S. et al. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat. Chem. Biol. 2, 486–493 (2006).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Shrimali, M. & Singh, K. P. New methods of nitrate removal from water. Environ. Pollut. 112, 351–359 (2001).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Anenberg, S. C. et al. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature 545, 467–471 (2017).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Takahashi, N. et al. The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst. Catal. Today 27, 63–69 (1996).

    CAS  Article  Google Scholar 

  9. 9.

    Busca, G., Lietti, L., Ramis, G. & Berti, F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl. Catal. B 18, 1–36 (1998).

    CAS  Article  Google Scholar 

  10. 10.

    Ulissi, Z. W., Medford, A. J., Bligaard, T. & Norskov, J. K. To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat. Commun. 8, 14621 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Schlogl, R. Heterogeneous catalysis. Angew. Chem. Int Ed. 54, 3465–3520 (2015).

    Article  CAS  Google Scholar 

  13. 13.

    Friend, C. M. & Xu, B. Heterogeneous catalysis: a central science for a sustainable future. Acc. Chem. Res. 50, 517–521 (2017).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Hematian, S. et al. Nitrogen oxide atom-transfer redox chemistry; mechanism of NO(g) to nitrite conversion utilizing μ-oxo heme-FeIII–O–CuII(L) constructs. J. Am. Chem. Soc. 137, 6602–6615 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Lee, Y. L., Kleis, J., Rossmeisl, J., Shao-Horn, Y. & Morgan, D. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4, 3966–3970 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Jacobs, R., Hwang, J., Shao-Horn, Y. & Morgan, D. Assessing correlations of perovskite catalytic performance with electronic structure descriptors. Chem. Mater. 31, 785–797 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013).

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Hong, W. T. et al. Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy Environ. Sci. 10, 2190–2200 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Viswanathan, B. CO oxidation and NO reduction on perovskite oxides. Catal. Rev. 34, 337–354 (1992).

    CAS  Article  Google Scholar 

  21. 21.

    Chen, J. et al. The influence of nonstoichiometry on LaMnO3 perovskite for catalytic NO oxidation. Appl. Catal. B 134–135, 251–257 (2013).

    Article  CAS  Google Scholar 

  22. 22.

    Kim, C. H., Qi, G., Dahlberg, K. & Li, W. Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 327, 1624–1627 (2010).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Wang, W. et al. Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd)Mn2O5 for NO oxidation in diesel exhaust. Science 337, 832–835 (2012).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Hodjati, S., Vaezzadeh, K., Petit, C., Pitchon, V. & Kiennemann, A. Absorption/desorption of NOx process on perovskites: performances to remove NOx from a lean exhaust gas. Appl. Catal. B 26, 5–16 (2000).

    CAS  Article  Google Scholar 

  25. 25.

    Constantinou, C., Li, W., Qi, G. & Epling, W. S. NOX storage and reduction over a perovskite-based lean NOX trap catalyst. Appl. Catal. B 134–135, 66–74 (2013).

    Article  CAS  Google Scholar 

  26. 26.

    Li, X.-G. et al. De-NOx in alternative lean/rich atmospheres on La1−xSrxCoO3 perovskites. Energy Environ. Sci. 4, 3351–3354 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Chen, J. et al. Catalytic performance of NO oxidation over LaMeO3 (Me = Mn, Fe, Co) perovskite prepared by the sol–gel method. Catal. Commun. 37, 105–108 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Choi, S. O., Penninger, M., Kim, C. H., Schneider, W. F. & Thompson, L. T. Experimental and computational investigation of effect of Sr on NO oxidation and oxygen exchange for La1−xSrxCoO3 perovskite catalysts. ACS Catal. 3, 2719–2728 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    Penninger, M. W., Kim, C. H., Thompson, L. T. & Schneider, W. F. DFT analysis of NO oxidation intermediates on undoped and doped LaCoO3 perovskite. J. Phys. Chem. C. 119, 20488–20494 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Zhou, C. et al. NO oxidation catalysis on copper doped hexagonal phase LaCoO3: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 16, 5106–5112 (2014).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Olsson, L., Persson, H., Fridell, E., Skoglundh, M. & Andersson, B. A kinetic study of NO oxidation and NOx storage on Pt/Al2O3 and Pt/BaO/Al2O3. J. Phys. Chem. B 105, 6895–6906 (2001).

    CAS  Article  Google Scholar 

  32. 32.

    Bhatia, D., McCabe, R. W., Harold, M. P. & Balakotaiah, V. Experimental and kinetic study of NO oxidation on model Pt catalysts. J. Catal. 266, 106–119 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    Wen, Y., Zhang, C., He, H., Yu, Y. & Teraoka, Y. Catalytic oxidation of nitrogen monoxide over La1−xCexCoO3 perovskites. Catal. Today 126, 400–405 (2007).

    CAS  Article  Google Scholar 

  34. 34.

    Suntivich, J. et al. Estimating hybridization of transition metal and oxygen states in perovskites from O K-edge X-ray absorption spectroscopy. J. Phys. Chem. C. 118, 1856–1863 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Jacobs, R., Mayeshiba, T., Booske, J. & Morgan, D. Material discovery and design principles for stable, high activity perovskite cathodes for solid oxide fuel cells. Adv. Energy Mater. 8, 1702708 (2018).

    Article  CAS  Google Scholar 

  36. 36.

    Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Giordano, L. et al. Chemical reactivity descriptor for the oxide-electrolyte interface in Li-ion batteries. J. Phys. Chem. Lett. 8, 3881–3887 (2017).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Onrubia, J. A., Pereda-Ayo, B., De-La-Torre, U. & González-Velasco, J. R. Key factors in Sr-doped LaBO3 (B = Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification. Appl. Catal. B 213, 198–210 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Dickens, C. F., Montoya, J. H., Kulkarni, A. R., Bajdich, M. & Nørskov, J. K. An electronic structure descriptor for oxygen reactivity at metal and metal-oxide surfaces. Surf. Sci. 681, 122–129 (2019).

    CAS  Article  Google Scholar 

  40. 40.

    Hammer, B. & Nørskov, J. K. in Impact of Surface Science on Catalysis Vol. 45 (eds Gates, B. C. & Knözinger, H.) 71–129 (Academic, 2000).

  41. 41.

    Di Valentin, C., Pacchioni, G. & Selloni, A. Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces. Phys. Rev. Lett. 97, 166803 (2006).

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Giordano, L. et al. Ligand-dependent energetics for dehydrogenation: implications in Li-ion battery electrolyte stability and selective oxidation catalysis of hydrogen-containing molecules. Chem. Mater. 31, 5464–5474 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    Mayeshiba, T. T. & Morgan, D. D. Factors controlling oxygen migration barriers in perovskites. Solid State Ion. 296, 71–77 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    Salmeron, M. & Schlogl, R. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf. Sci. Rep. 63, 169–199 (2008).

    CAS  Article  Google Scholar 

  45. 45.

    Bluhm, H. et al. In situ X-ray photoelectron spectroscopy studies of gas-solid interfaces at near-ambient conditions. MRS Bull. 32, 1022–1030 (2011).

    Article  Google Scholar 

  46. 46.

    Rosseler, O. et al. Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: products, effect of UV irradiation, water, and coadsorbed K+. J. Phys. Chem. Lett. 4, 536–541 (2013).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Rodriguez, J. A. et al. Chemistry of NO2 on oxide surfaces: formation of NO3 on TiO2(110) and NO2↔O vacancy interactions. J. Am. Chem. Soc. 123, 9597–9605 (2001).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Baltrusaitis, J., Jayaweera, P. M. & Grassian, V. H. XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions. Phys. Chem. Chem. Phys. 11, 8295–8305 (2009).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Aduru, S., Contarini, S. & Rabalais, J. W. Electron-, x-ray-, and ion-stimulated decomposition of nitrate salts. J. Phys. Chem. 90, 1683–1688 (1986).

    CAS  Article  Google Scholar 

  50. 50.

    Haubrich, J., Quiller, R. G., Benz, L., Liu, Z. & Friend, C. M. In situ ambient pressure studies of the chemistry of NO2 and water on rutile TiO2(110). Langmuir 26, 2445–2451 (2010).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Herranz, T., Deng, X., Cabot, A., Liu, Z. & Salmeron, M. In situ XPS study of the adsorption and reactions of NO and O2 on gold nanoparticles deposited on TiO2 and SiO2. J. Catal. 283, 119–123 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    Au, C. T., Carley, A. F. & Roberts, M. W. Photoelectron spectroscopy: a strategy for the study of reactions at solid surfaces. Int. Rev. Phys. Chem. 5, 57–87 (2008).

    Article  Google Scholar 

  53. 53.

    Finlayson-Pitts, B. J., Wingen, L. M., Sumner, A. L., Syomin, D. & Ramazan, K. A. The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism. Phys. Chem. Chem. Phys. 5, 223–242 (2003).

    CAS  Article  Google Scholar 

  54. 54.

    Morandi, S. et al. Reduction by CO of NOx species stored onto Pt–K/Al2O3 and Pt–Ba/Al2O3 lean NOx traps. Catal. Today 176, 399–403 (2011).

    CAS  Article  Google Scholar 

  55. 55.

    Simonot, L., Garin, F. & Maire, G. A comparative study of LaCoO3, CO3O4 and a mix of LaCoO3—Co3O4: II. Catalytic properties for the CO + NO reaction. Appl. Catal. B 11, 181–191 (1997).

    CAS  Article  Google Scholar 

  56. 56.

    Milt, V. G., Ulla, M. A. & Miró, E. E. NOx trapping and soot combustion on BaCoO3−y perovskite: LRS and FTIR characterization. Appl. Catal. B 57, 13–21 (2005).

    CAS  Article  Google Scholar 

  57. 57.

    Mutoro, E. et al. Reversible compositional control of oxide surfaces by electrochemical potentials. J. Phys. Chem. Lett. 3, 40–44 (2012).

    CAS  Article  Google Scholar 

  58. 58.

    Hwang, J. et al. CO2 reactivity on cobalt-based perovskites. J. Phys. Chem. C. 122, 20391–20401 (2018).

    CAS  Article  Google Scholar 

  59. 59.

    Marques, R. et al. Kinetics and mechanism of steady-state catalytic NO + O2 reactions on Pt/SiO2 and Pt/CeZrO2. J. Mol. Catal. A 221, 127–136 (2004).

    CAS  Article  Google Scholar 

  60. 60.

    Hansen, T. K., Høj, M., Hansen, B. B., Janssens, T. V. W. & Jensen, A. D. The effect of Pt particle size on the oxidation of CO, C3H6, and NO Over Pt/Al2O3 for diesel exhaust aftertreatment. Top. Catal. 60, 1333–1344 (2017).

    CAS  Article  Google Scholar 

  61. 61.

    Dickens, C. F. & Nørskov, J. K. A theoretical investigation into the role of surface defects for oxygen evolution on RuO2. J. Phys. Chem. C. 121, 18516–18524 (2017).

    CAS  Article  Google Scholar 

  62. 62.

    Rao, R. R. et al. Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nat. Catal. 3, 516–525 (2020).

    CAS  Article  Google Scholar 

  63. 63.

    Wu, T. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2, 763–772 (2019).

    CAS  Article  Google Scholar 

  64. 64.

    Lee, Y.-L. et al. Kinetics of oxygen surface exchange on epitaxial Ruddlesden–Popper phases and correlations to first-principles descriptors. J. Phys. Chem. Lett. 7, 244–249 (2016).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Inoue, I. H., Goto, O., Makino, H., Hussey, N. E. & Ishikawa, M. Bandwidth control in a perovskite-type 3d1-correlated metal Ca1−xSrxVO3. Evolution of the electronic properties and effective mass. Phys. Rev. B 58, 4372–4383 (1998).

    CAS  Article  Google Scholar 

  67. 67.

    Hwang, J. et al. Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Mater. Today 31, 100–118 (2019).

    CAS  Article  Google Scholar 

  68. 68.

    Zaanen, J. & Sawatzky, G. A. Systematics in band gaps and optical spectra of 3D transition metal compounds. J. Solid State Chem. 88, 8–27 (1990).

    CAS  Article  Google Scholar 

  69. 69.

    Crumlin, E. J. et al. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells. Energy Environ. Sci. 5, 6081–6088 (2012).

    CAS  Article  Google Scholar 

  70. 70.

    Feng, Z. et al. Revealing the atomic structure and strontium distribution in nanometer-thick La0.8Sr0.2CoO3−δ grown on (001)-oriented SrTiO3. Energy Environ. Sci. 7, 1166–1174 (2014).

    CAS  Article  Google Scholar 

  71. 71.

    Imamura, M., Matsubayashi, N. & Shimada, H. Catalytically active oxygen species in La1−xSrxCoO3−δ studied by XPS and XAFS spectroscopy. J. Phys. Chem. B 104, 7348–7353 (2000).

    CAS  Article  Google Scholar 

  72. 72.

    González Tejuca, L., Bell, A. T., Fierro, J. L. G. & Peña, M. A. Surface behaviour of reduced LaCoO3 as studied by TPD of CO, CO2 and H2 probes and by XPS. Appl. Surf. Sci. 31, 301–316 (1988).

    Article  Google Scholar 

  73. 73.

    Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range. Surf. Interface Anal. 21, 165–176 (1994).

    CAS  Article  Google Scholar 

  74. 74.

    Brown, W. A. & King, D. A. NO chemisorption and reactions on metal surfaces: a new perspective. J. Phys. Chem. B 104, 2578–2595 (2000).

    CAS  Article  Google Scholar 

  75. 75.

    Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  76. 76.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Article  Google Scholar 

  77. 77.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  78. 78.

    Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS  Article  Google Scholar 

  79. 79.

    Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J. Phys. Condens. Matter 9, 767 (1997).

    CAS  Article  Google Scholar 

  80. 80.

    Lee, Y.-L., Kleis, J., Rossmeisl, J. & Morgan, D. Ab initio energetics of LaBO3 (001) (B = Mn, Fe, Co, and Ni) for solid oxide fuel cell cathode. Phys. Rev. B 80, 224101 (2009).

    Article  CAS  Google Scholar 

  81. 81.

    Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107 (2006).

    Article  CAS  Google Scholar 

  82. 82.

    Stoerzinger, K. A. et al. Reactivity of perovskites with water: role of hydroxylation in wetting and implications for oxygen electrocatalysis. J. Phys. Chem. C. 119, 18504–18512 (2015).

    CAS  Article  Google Scholar 

  83. 83.

    NIST-JANAF Thermochemical Tables (National Institute of Standards and Technology, 1985);

  84. 84.

    Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

    Article  CAS  Google Scholar 

  85. 85.

    Hwang, J. et al. Perovskites in catalysis and electrocatalysis. Science 358, 751–756 (2017).

    CAS  PubMed  Article  Google Scholar 

Download references


The ALS beamlines 9.3.2 and 11.0.2 are supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and Materials Sciences Division of the US DOE at the Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231. Some of the PLD film growth was conducted at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. This work also used resources of the Extreme Science and Engineering Discovery Environment (XSEDE)84, which is supported by National Science Foundation grant number ACI-1548562. X.R.W. acknowledges support from the Nanyang Assistant Professorship grant from Nanyang Technological University, Academic Research Fund Tier 1 (RG108/17) and (RG177/18) from the Singapore Ministry of Education.

Author information




Y.S.-H., J.H. and R.R.R. conceived and designed the experiments of this projects. J.H., R.R.R., K.A., E.J.C. and H.B. performed the ambient-pressure XPS measurements. X.R.W. grew the epitaxial thin films. K.A. performed the plug-flow reactor measurements. L.G. conducted the density functional theory calculations. Y.S.-H., J.H., R.R.R. and L.G. wrote the manuscript. All authors discussed, commented on and revised the manuscript.

Corresponding authors

Correspondence to Livia Giordano or Yang Shao-Horn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Juan González-Velasco and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–41, Tables 1–6 and Notes 1–3.

Supplementary Data 1

Atomic coordinates of optimized structures for DFT calculations conducted in this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hwang, J., Rao, R.R., Giordano, L. et al. Regulating oxygen activity of perovskites to promote NOx oxidation and reduction kinetics. Nat Catal 4, 663–673 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing