Abstract
The electrocatalytic reduction of carbon dioxide is widely studied for the sustainable production of fuels and chemicals. Metal ions in the electrolyte influence the reaction performance, although their main role is under discussion. Here we studied CO2 reduction on gold electrodes through cyclic voltammetry and showed that, without a metal cation, the reaction does not take place in a pure 1 mM H2SO4 electrolyte. We further investigated the CO2 reduction with and without metal cations in solution using scanning electrochemical microscopy in the surface-generation tip-collection mode with a platinum ultramicroelectrode as a CO and H2 sensor. CO is only produced on gold, silver or copper if a metal cation is added to the electrolyte. Density functional theory simulations confirmed that partially desolvated metal cations stabilize the CO2– intermediate via a short-range electrostatic interaction, which enables its reduction. Overall, our results redefine the reaction mechanism and provide definitive evidence that positively charged species from the electrolyte are key to stabilize the crucial reaction intermediate.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The datasets generated though DFT simulation and analysed during the current study are available in the ioChem-BD database (ref. 64) at https://doi.org/10.19061/iochem-bd-1-194 (ref. 65). Experimental datasets are available from the corresponding author upon reasonable request.
References
Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).
König, M., Vaes, J., Klemm, E. & Pant, D. Solvents and supporting electrolytes in the electrocatalytic reduction of CO2. iScience 19, 135–160 (2019).
Moura de Salles Pupo, M. & Kortlever, R. Electrolyte effects on the electrochemical reduction of CO2. ChemPhysChem 20, 2926–2935 (2019).
Setterfield-Price, B. M. & Dryfe, R. A. W. The influence of electrolyte identity upon the electro-reduction of CO2. J. Electroanal. Chem. 730, 48–58 (2014).
Verma, S., Lu, X., Ma, S., Masel, R. I. & Kenis, P. J. A. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 18, 7075–7084 (2016).
Thorson, M. R., Siil, K. I. & Kenis, P. J. A. Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69–F74 (2012).
Banerjee, S., Zhang, Z., Hall, A. S. & Thoi, V. S. Surfactant perturbation of cation interactions at the electrode–electrolyte interface in carbon dioxide reduction. ACS Catal. 10, 9907–9914 (2020).
Zhang, Q., Shao, X., Yi, J., Liu, Y. & Zhang, J. An experimental study of electroreduction of CO2 to HCOOH on SnO2/C in presence of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) and anions (HCO3−, Cl−, Br− and I−). Chinese J. Chem. Eng. 28, 2549–2554 (2020).
Shen, J., Lan, D. & Yang, T. Influence of supporting electrolyte on the electrocatalysis of CO2 reduction by cobalt protoporphyrin. Int. J. Electrochem. Sci. 13, 9847–9857 (2018).
Kyriacou, G. Z. & Anagnostopoulos, A. K. Influence of CO2 partial pressure and the supporting electrolyte cation on the product distribution in CO2 electroreduction. J. Appl. Electrochem. 23, 483–486 (1993).
Kim, H., Park, H. S., Hwang, Y. J. & Min, B. K. Surface-morphology-dependent electrolyte effects on gold-catalyzed electrochemical CO2 reduction. J. Phys. Chem. C 121, 22637–22643 (2017).
Kim, H.-Y. et al. Analysis on the effect of operating conditions on electrochemical conversion of carbon dioxide to formic acid. Int. J. Hydrog. Energy 39, 16506–16512 (2014).
Gunathunge, C. M., Ovalle, V. J. & Waegele, M. M. Probing promoting effects of alkali cations on the reduction of CO at the aqueous electrolyte/copper interface. Phys. Chem. Chem. Phys. 19, 30166–30172 (2017).
Waegele, M. M., Gunathunge, C. M., Li, J. & Li, X. How cations affect the electric double layer and the rates and selectivity of electrocatalytic processes. J. Chem. Phys. 151, 160902 (2019).
Akhade, S. A., McCrum, I. T. & Janik, M. J. The impact of specifically adsorbed ions on the copper-catalyzed electroreduction of CO2. J. Electrochem. Soc. 163, F477–F484 (2016).
Strmcnik, D. et al. Effects of Li+, K+, and Ba2+ cations on the ORR at model and high surface area Pt and Au surfaces in alkaline solutions. J. Phys. Chem. Lett. 2, 2733–2736 (2011).
Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009).
Murata, A. & Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn 64, 123–127 (1991).
Hori, Y. & Suzuki, S. Electrolytic reduction of carbon dioxide at mercury electrode in aqueous solution. Bull. Chem. Soc. Jpn 55, 660–665 (1982).
Frumkin, A. N. Influence of cation adsorption on the kinetics of electrode processes. Trans. Faraday Soc. 55, 156–167 (1959).
Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).
Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).
Hussain, G. et al. How cations determine the interfacial potential profile: relevance for the CO2 reduction reaction. Electrochim. Acta 327, 135055 (2019).
Singh, M. R., Kwon, Y., Lum, Y., Ager, J. W. & Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016).
Ayemoba, O. & Cuesta, A. Spectroscopic evidence of size-dependent buffering of interfacial pH by cation hydrolysis during CO2 electroreduction. ACS Appl. Mater. Interfaces 9, 27377–27382 (2017).
Zhang, F. & Co, A. C. Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media. Angew. Chem. Int. Ed. 59, 1674–1681 (2020).
Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).
Silvestrelli, P. L. Hydrogen bonding characterization in water and small molecules. J. Chem. Phys. 146, 1–31 (2017).
García, G. & Koper, M. T. M. Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cells. ChemPhysChem 12, 2064–2072 (2011).
Jacobse, L., Raaijman, S. J. & Koper, M. T. M. The reactivity of platinum microelectrodes. Phys. Chem. Chem. Phys. 18, 28451–28457 (2016).
Bewick, A. & Thomas, B. Optical and electrochemical studies of the underpotential deposition of metals Part I. Thallium deposition on single crystal silver electrodes. J. Electroanal. Chem. 65, 911–931 (1975).
Schouten, K. J. P., Pérez-Gallent, E. & Koper, M. T. M. The electrochemical characterization of copper single-crystal electrodes in alkaline media. J. Electroanal. Chem. 699, 6–9 (2013).
Monteiro, M. C. O., Jacobse, L., Touzalin, T. & Koper, M. T. M. Mediator-free SECM for probing the diffusion layer pH with functionalized gold ultramicroelectrodes. Anal. Chem. 92, 2237–2243 (2020).
Voogd, J. M. De et al. Fast and reliable pre-approach for scanning probe microscopes based on tip-sample capacitance. Ultramicroscopy 181, 61–69 (2017).
Monteiro, M. C. O., Jacobse, L. & Koper, M. T. M. Understanding the voltammetry of bulk CO electrooxidation in neutral media through combined SECM measurements. J. Phys. Chem. Lett. 11, 9708–9713 (2020).
Henckel, D. A. et al. Potential dependence of the local pH in a CO2 reduction electrolyzer. ACS Catal. 11, 255–263 (2021).
Lukaszewski, M., Soszko, M. & Czerwiński, A. Electrochemical methods of real surface area determination of noble metal electrodes—an overview. Int. J. Electrochem. Sci. 11, 4442–4469 (2016).
Macao, L. H., Santos, M. C., Machado, S. A. S. & Avaca, L. A. Underpotential deposition of silver on polycrystalline platinum studied by cyclic voltammetry and rotating ring-disc techniques. J. Chem. Soc. Faraday Trans. 93, 3999–4003 (1997).
Bellarosa, L., García-Muelas, R., Revilla-López, G. & López, N. Diversity at the water–metal interface: metal, water thickness, and confinement effects. ACS Cent. Sci. 2, 109–116 (2016).
Marcus, Y. Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109, 1346–1370 (2009).
Zhu, Q., Wallentine, S., Deng, G. & Baker, L. R. Solvation-induced Onsager reaction field rather than double layer field controls CO2 reduction on gold. Preprint at https://doi.org/10.26434/chemrxiv.14410655.v1 (2021).
Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).
Schizodimou, A. & Kyriacou, G. Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochim. Acta 78, 171–176 (2012).
Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).
Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).
Rossmeisl, J., Chan, K., Ahmed, R., Tripković, V. & Björketun, M. E. pH in atomic scale simulations of electrochemical interfaces. Phys. Chem. Chem. Phys. 15, 10321–10325 (2013).
Bondue, C. J., Graf, M., Goyal, A. & Koper, M. T. M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. J. Am. Chem. Soc. 143, 279–285 (2021).
Monteiro, M. C. O. & Koper, M. T. M. Alumina contamination through polishing and its effect on hydrogen evolution on gold electrodes. Electrochim. Acta 325, 134915 (2019).
Do, U. P., Seland, F. & Johannessen, E. A. The real area of nanoporous catalytic surfaces of gold and palladium in aqueous solutions. J. Electrochem. Soc. 165, H219–H228 (2018).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
Bucko, T., Hafner, J., Lebègue, S. & Ángyán, J. G. Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 114, 11814–11824 (2010).
Almora-Barrios, N., Carchini, G., Błoński, P. & López, N. Costless derivation of dispersion coefficients for metal surfaces. J. Chem. Theory Comput. 10, 5002–5009 (2014).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Marx, D. & Hutter, J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge Univ. Press, 2009).
Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).
Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).
Makov, G. & Payne, M. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995).
Haynes, W. M. Handbook of Chemistry and Physics (CRC, 2014).
Lide, D. R. CRC Handbook of Chemistry and Physics Vol. 85 (CRC, 2003).
Álvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).
Dattila, F. Cation effect CO2 reduction. ioChem-BD https://doi.org/10.19061/iochem-bd-1-194 (2021).
Acknowledgements
This work was supported by the European Commission (Innovative Training Network ELCoREL, 722614-ELCOREL). F.D., R.G.-M. and N.L. further acknowledge the Barcelona Supercomputing Center (BSC-RES) for providing generous computational resources.
Author information
Authors and Affiliations
Contributions
M.C.O.M. and F.D. wrote the manuscript with input from all the authors. M.C.O.M. and M.T.M.K. designed the experiments, which were carried out by M.C.O.M. with assistance from B.H., F.D. R.G.-M. and N.L. carried out the DFT AIMD simulations. All the authors contributed to the modelling section, read and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Catalysis thanks Leanne Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Discussion, Methods, Notes 1 and 2, Figs. 1–12, Tables 1–4 and Videos 1– 5.
Supplementary Video 1
DFT-based ab initio molecular dynamics of the Au-H2O-CO2 system.
Supplementary Video 2
DFT-based ab initio molecular dynamics of the Au-H2O-Li+-CO2 system.
Supplementary Video 3
DFT-based ab initio molecular dynamics of the Au-H2O-Na+-CO2 system.
Supplementary Video 4
DFT-based ab initio molecular dynamics of the Au-H2O-K+-CO2 system.
Supplementary Video 5
DFT-based ab initio molecular dynamics of the Au-H2O-Cs+-CO2 system.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Monteiro, M.C.O., Dattila, F., Hagedoorn, B. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat Catal 4, 654–662 (2021). https://doi.org/10.1038/s41929-021-00655-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41929-021-00655-5
This article is cited by
-
Bipolar membranes for intrinsically stable and scalable CO2 electrolysis
Nature Energy (2024)
-
CO2-to-methanol electroconversion on a molecular cobalt catalyst facilitated by acidic cations
Nature Catalysis (2024)
-
Pressure-induced generation of heterogeneous electrocatalytic metal hydride surfaces for sustainable hydrogen transfer
Nature Communications (2024)
-
Effect of ion-specific water structures at metal surfaces on hydrogen production
Nature Communications (2024)
-
Alkali cation-induced cathodic corrosion in Cu electrocatalysts
Nature Communications (2024)