Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution

Matters Arising to this article was published on 28 November 2022

Abstract

The electrocatalytic reduction of carbon dioxide is widely studied for the sustainable production of fuels and chemicals. Metal ions in the electrolyte influence the reaction performance, although their main role is under discussion. Here we studied CO2 reduction on gold electrodes through cyclic voltammetry and showed that, without a metal cation, the reaction does not take place in a pure 1 mM H2SO4 electrolyte. We further investigated the CO2 reduction with and without metal cations in solution using scanning electrochemical microscopy in the surface-generation tip-collection mode with a platinum ultramicroelectrode as a CO and H2 sensor. CO is only produced on gold, silver or copper if a metal cation is added to the electrolyte. Density functional theory simulations confirmed that partially desolvated metal cations stabilize the CO2 intermediate via a short-range electrostatic interaction, which enables its reduction. Overall, our results redefine the reaction mechanism and provide definitive evidence that positively charged species from the electrolyte are key to stabilize the crucial reaction intermediate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CO2 reduction on gold with and without 280 μM Cs+ in solution.
Fig. 2: Effect of the Cs+ concentration.
Fig. 3: Effect of the cation identity.
Fig. 4: SECM measurement scheme and characterization of the electrodes used.
Fig. 5: CO detection with SECM.
Fig. 6: Cation coordination with CO2.
Fig. 7: CO2 activation via an explicit cation–intermediate interaction, driven by cation concentration at the OHP.
Fig. 8: Mechanism of CO2 reduction to CO.

Similar content being viewed by others

Data availability

The datasets generated though DFT simulation and analysed during the current study are available in the ioChem-BD database (ref. 64) at https://doi.org/10.19061/iochem-bd-1-194 (ref. 65). Experimental datasets are available from the corresponding author upon reasonable request.

References

  1. Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. König, M., Vaes, J., Klemm, E. & Pant, D. Solvents and supporting electrolytes in the electrocatalytic reduction of CO2. iScience 19, 135–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Moura de Salles Pupo, M. & Kortlever, R. Electrolyte effects on the electrochemical reduction of CO2. ChemPhysChem 20, 2926–2935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Setterfield-Price, B. M. & Dryfe, R. A. W. The influence of electrolyte identity upon the electro-reduction of CO2. J. Electroanal. Chem. 730, 48–58 (2014).

    Article  CAS  Google Scholar 

  5. Verma, S., Lu, X., Ma, S., Masel, R. I. & Kenis, P. J. A. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 18, 7075–7084 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Thorson, M. R., Siil, K. I. & Kenis, P. J. A. Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69–F74 (2012).

    Article  Google Scholar 

  7. Banerjee, S., Zhang, Z., Hall, A. S. & Thoi, V. S. Surfactant perturbation of cation interactions at the electrode–electrolyte interface in carbon dioxide reduction. ACS Catal. 10, 9907–9914 (2020).

    Article  CAS  Google Scholar 

  8. Zhang, Q., Shao, X., Yi, J., Liu, Y. & Zhang, J. An experimental study of electroreduction of CO2 to HCOOH on SnO2/C in presence of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) and anions (HCO3, Cl, Br and I). Chinese J. Chem. Eng. 28, 2549–2554 (2020).

    Article  CAS  Google Scholar 

  9. Shen, J., Lan, D. & Yang, T. Influence of supporting electrolyte on the electrocatalysis of CO2 reduction by cobalt protoporphyrin. Int. J. Electrochem. Sci. 13, 9847–9857 (2018).

    Article  CAS  Google Scholar 

  10. Kyriacou, G. Z. & Anagnostopoulos, A. K. Influence of CO2 partial pressure and the supporting electrolyte cation on the product distribution in CO2 electroreduction. J. Appl. Electrochem. 23, 483–486 (1993).

    CAS  Google Scholar 

  11. Kim, H., Park, H. S., Hwang, Y. J. & Min, B. K. Surface-morphology-dependent electrolyte effects on gold-catalyzed electrochemical CO2 reduction. J. Phys. Chem. C 121, 22637–22643 (2017).

    Article  CAS  Google Scholar 

  12. Kim, H.-Y. et al. Analysis on the effect of operating conditions on electrochemical conversion of carbon dioxide to formic acid. Int. J. Hydrog. Energy 39, 16506–16512 (2014).

    Article  CAS  Google Scholar 

  13. Gunathunge, C. M., Ovalle, V. J. & Waegele, M. M. Probing promoting effects of alkali cations on the reduction of CO at the aqueous electrolyte/copper interface. Phys. Chem. Chem. Phys. 19, 30166–30172 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Waegele, M. M., Gunathunge, C. M., Li, J. & Li, X. How cations affect the electric double layer and the rates and selectivity of electrocatalytic processes. J. Chem. Phys. 151, 160902 (2019).

    Article  PubMed  Google Scholar 

  15. Akhade, S. A., McCrum, I. T. & Janik, M. J. The impact of specifically adsorbed ions on the copper-catalyzed electroreduction of CO2. J. Electrochem. Soc. 163, F477–F484 (2016).

    Article  CAS  Google Scholar 

  16. Strmcnik, D. et al. Effects of Li+, K+, and Ba2+ cations on the ORR at model and high surface area Pt and Au surfaces in alkaline solutions. J. Phys. Chem. Lett. 2, 2733–2736 (2011).

    Article  CAS  Google Scholar 

  17. Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Murata, A. & Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn 64, 123–127 (1991).

    Article  CAS  Google Scholar 

  19. Hori, Y. & Suzuki, S. Electrolytic reduction of carbon dioxide at mercury electrode in aqueous solution. Bull. Chem. Soc. Jpn 55, 660–665 (1982).

    Article  CAS  Google Scholar 

  20. Frumkin, A. N. Influence of cation adsorption on the kinetics of electrode processes. Trans. Faraday Soc. 55, 156–167 (1959).

    Article  CAS  Google Scholar 

  21. Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    Article  CAS  Google Scholar 

  22. Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

    Article  CAS  Google Scholar 

  23. Hussain, G. et al. How cations determine the interfacial potential profile: relevance for the CO2 reduction reaction. Electrochim. Acta 327, 135055 (2019).

    Article  CAS  Google Scholar 

  24. Singh, M. R., Kwon, Y., Lum, Y., Ager, J. W. & Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Ayemoba, O. & Cuesta, A. Spectroscopic evidence of size-dependent buffering of interfacial pH by cation hydrolysis during CO2 electroreduction. ACS Appl. Mater. Interfaces 9, 27377–27382 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, F. & Co, A. C. Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media. Angew. Chem. Int. Ed. 59, 1674–1681 (2020).

    Article  CAS  Google Scholar 

  27. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Silvestrelli, P. L. Hydrogen bonding characterization in water and small molecules. J. Chem. Phys. 146, 1–31 (2017).

    Article  Google Scholar 

  29. García, G. & Koper, M. T. M. Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cells. ChemPhysChem 12, 2064–2072 (2011).

    Article  PubMed  Google Scholar 

  30. Jacobse, L., Raaijman, S. J. & Koper, M. T. M. The reactivity of platinum microelectrodes. Phys. Chem. Chem. Phys. 18, 28451–28457 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Bewick, A. & Thomas, B. Optical and electrochemical studies of the underpotential deposition of metals Part I. Thallium deposition on single crystal silver electrodes. J. Electroanal. Chem. 65, 911–931 (1975).

    Article  CAS  Google Scholar 

  32. Schouten, K. J. P., Pérez-Gallent, E. & Koper, M. T. M. The electrochemical characterization of copper single-crystal electrodes in alkaline media. J. Electroanal. Chem. 699, 6–9 (2013).

    Article  CAS  Google Scholar 

  33. Monteiro, M. C. O., Jacobse, L., Touzalin, T. & Koper, M. T. M. Mediator-free SECM for probing the diffusion layer pH with functionalized gold ultramicroelectrodes. Anal. Chem. 92, 2237–2243 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Voogd, J. M. De et al. Fast and reliable pre-approach for scanning probe microscopes based on tip-sample capacitance. Ultramicroscopy 181, 61–69 (2017).

    Article  PubMed  Google Scholar 

  35. Monteiro, M. C. O., Jacobse, L. & Koper, M. T. M. Understanding the voltammetry of bulk CO electrooxidation in neutral media through combined SECM measurements. J. Phys. Chem. Lett. 11, 9708–9713 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Henckel, D. A. et al. Potential dependence of the local pH in a CO2 reduction electrolyzer. ACS Catal. 11, 255–263 (2021).

    Article  CAS  Google Scholar 

  37. Lukaszewski, M., Soszko, M. & Czerwiński, A. Electrochemical methods of real surface area determination of noble metal electrodes—an overview. Int. J. Electrochem. Sci. 11, 4442–4469 (2016).

    Article  CAS  Google Scholar 

  38. Macao, L. H., Santos, M. C., Machado, S. A. S. & Avaca, L. A. Underpotential deposition of silver on polycrystalline platinum studied by cyclic voltammetry and rotating ring-disc techniques. J. Chem. Soc. Faraday Trans. 93, 3999–4003 (1997).

    Article  Google Scholar 

  39. Bellarosa, L., García-Muelas, R., Revilla-López, G. & López, N. Diversity at the water–metal interface: metal, water thickness, and confinement effects. ACS Cent. Sci. 2, 109–116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marcus, Y. Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109, 1346–1370 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Zhu, Q., Wallentine, S., Deng, G. & Baker, L. R. Solvation-induced Onsager reaction field rather than double layer field controls CO2 reduction on gold. Preprint at https://doi.org/10.26434/chemrxiv.14410655.v1 (2021).

  42. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  CAS  Google Scholar 

  43. Schizodimou, A. & Kyriacou, G. Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochim. Acta 78, 171–176 (2012).

    Article  CAS  Google Scholar 

  44. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  45. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    Article  CAS  Google Scholar 

  46. Rossmeisl, J., Chan, K., Ahmed, R., Tripković, V. & Björketun, M. E. pH in atomic scale simulations of electrochemical interfaces. Phys. Chem. Chem. Phys. 15, 10321–10325 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Bondue, C. J., Graf, M., Goyal, A. & Koper, M. T. M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. J. Am. Chem. Soc. 143, 279–285 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Monteiro, M. C. O. & Koper, M. T. M. Alumina contamination through polishing and its effect on hydrogen evolution on gold electrodes. Electrochim. Acta 325, 134915 (2019).

    Article  CAS  Google Scholar 

  49. Do, U. P., Seland, F. & Johannessen, E. A. The real area of nanoporous catalytic surfaces of gold and palladium in aqueous solutions. J. Electrochem. Soc. 165, H219–H228 (2018).

    Article  CAS  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  51. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  52. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Bucko, T., Hafner, J., Lebègue, S. & Ángyán, J. G. Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 114, 11814–11824 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Almora-Barrios, N., Carchini, G., Błoński, P. & López, N. Costless derivation of dispersion coefficients for metal surfaces. J. Chem. Theory Comput. 10, 5002–5009 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  57. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  58. Marx, D. & Hutter, J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge Univ. Press, 2009).

  59. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  60. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  61. Makov, G. & Payne, M. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995).

    Article  CAS  Google Scholar 

  62. Haynes, W. M. Handbook of Chemistry and Physics (CRC, 2014).

  63. Lide, D. R. CRC Handbook of Chemistry and Physics Vol. 85 (CRC, 2003).

  64. Álvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).

    Article  PubMed  Google Scholar 

  65. Dattila, F. Cation effect CO2 reduction. ioChem-BD https://doi.org/10.19061/iochem-bd-1-194 (2021).

Download references

Acknowledgements

This work was supported by the European Commission (Innovative Training Network ELCoREL, 722614-ELCOREL). F.D., R.G.-M. and N.L. further acknowledge the Barcelona Supercomputing Center (BSC-RES) for providing generous computational resources.

Author information

Authors and Affiliations

Authors

Contributions

M.C.O.M. and F.D. wrote the manuscript with input from all the authors. M.C.O.M. and M.T.M.K. designed the experiments, which were carried out by M.C.O.M. with assistance from B.H., F.D. R.G.-M. and N.L. carried out the DFT AIMD simulations. All the authors contributed to the modelling section, read and commented on the manuscript.

Corresponding author

Correspondence to Marc T. M. Koper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Leanne Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Methods, Notes 1 and 2, Figs. 1–12, Tables 1–4 and Videos 1– 5.

Supplementary Video 1

DFT-based ab initio molecular dynamics of the Au-H2O-CO2 system.

Supplementary Video 2

DFT-based ab initio molecular dynamics of the Au-H2O-Li+-CO2 system.

Supplementary Video 3

DFT-based ab initio molecular dynamics of the Au-H2O-Na+-CO2 system.

Supplementary Video 4

DFT-based ab initio molecular dynamics of the Au-H2O-K+-CO2 system.

Supplementary Video 5

DFT-based ab initio molecular dynamics of the Au-H2O-Cs+-CO2 system.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, M.C.O., Dattila, F., Hagedoorn, B. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat Catal 4, 654–662 (2021). https://doi.org/10.1038/s41929-021-00655-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00655-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing