Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Surface molecular imprinting over supported metal catalysts for size-dependent selective hydrogenation reactions

Abstract

Molecular imprinting of polymer matrices enables the creation of template-shaped cavities with high affinity for molecules of given shape and size. Here we introduce a surface molecular imprinting strategy to control the hydrogenation selectivity of various aromatic molecules over a supported palladium catalyst. This strategy involves the sequential adsorption over the metal surface of an aromatic template molecule followed by poisoners, resulting in the formation of non-poisoned active islands of predetermined shape and size. Because of steric constraints, these active islands exhibit high selectivity in the chemical conversion of aromatic molecules that correspond in size and shape to the templates. The elaborated strategy enables a practical application relevant to selective hydrogenation and removal of carcinogenic benzene from mixtures of aromatics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustration of the molecular imprinting strategy over a palladium surface.
Fig. 2: Catalytic performance and characterizations.
Fig. 3: FTIR studies of the imprinted Pd/SiO2 catalyst.
Fig. 4: Characterization of the imprinted catalysts.
Fig. 5: TEM analysis for various samples.
Fig. 6: Correlation between bare and poisoned Pd.
Fig. 7: Hydrogenation of aromatics over the studied catalysts.
Fig. 8: Catalytic results for hydrogenation of aromatics over Pd/SiO2 and Ben-Print-Pd/SiO2.

Data availability

All data are available from the authors upon reasonable request. Source data for all relevant catalytic runs are provided and are also available via the NextCloud repository of Lille University (https://nextcloud.univ-lille.fr/index.php/s/nEfMjomadjapRWM).

References

  1. 1.

    van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article  CAS  Google Scholar 

  2. 2.

    Kang, J. et al. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis. Nat. Commun. 11, 827 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Liu, P., Qin, R., Fu, G. & Zheng, N. Surface coordination chemistry of metal nanomaterials. J. Am. Chem. Soc. 139, 2122–2131 (2017).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Wang, C. et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene. Nat. Commun. 10, 4348 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Cui, T. L. et al. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew. Chem. Int. Ed. 55, 9178–9182 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Bai, R., Song, Y., Li, Y. & Yu, J. Creating hierarchical pores in zeolite catalysts. Trends Chem. 1, 601–611 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    Katz, A. & Davis, M. E. Molecular imprinting of bulk, microporous silica. Nature 403, 286–289 (2000).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Chen, L., Wang, X., Lu, W., Wu, X. & Li, J. Molecular imprinting: perspectives and applications. Chem. Soc. Rev. 45, 2137–2211 (2016).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Mahon, C. S. & Fulton, D. A. Mimicking nature with synthetic macromolecules capable of recognition. Nat. Chem. 6, 665–672 (2014).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Vladimir, M., Mirsky, T. H., Piletsky, S. A. & Wolfbeis, O. S. A spreader-bar approach to molecular architecture: formation of stable artificial chemoreceptors. Angew. Chem. Int. Ed. 38, 1108–1110 (1999).

    Article  Google Scholar 

  12. 12.

    Canlas, C. P. et al. Shape-selective sieving layers on an oxide catalyst surface. Nat. Chem. 4, 1030–1036 (2012).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Li, Z. et al. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chem. Rev. 120, 623–682 (2020).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Wu, D. et al. In-situ generation of Brønsted acidity in the Pd-I bifunctional catalysts for selective reductive etherification of carbonyl compounds under mild conditions. ACS Catal. 9, 2940–2948 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    Marshall, S. T. et al. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat. Mater. 9, 853–858 (2010).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Wu, D. et al. Dual metal–acid Pd–Br catalyst for selective hydrodeoxygenation of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran at ambient temperature. ACS Catal. 11, 19–30 (2020).

    Article  CAS  Google Scholar 

  17. 17.

    Pang, S. H., Schoenbaum, C. A., Schwartz, D. K. & Medlin, J. W. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers. Nat. Commun. 4, 2448 (2013).

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Liu, X. et al. Oxide-nanotrap-anchored platinum nanoparticles with high activity and sintering resistance by area-se lective atomic layer deposition. Angew. Chem. Int. Ed. 56, 1648–1652 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Zhao, X. et al. Thiol treatment creates selective palladium catalysts for semihydrogenation of internal alkynes. Chem 4, 1080–1091 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Wu, D. et al. Lignin compounds to monoaromatics: selective cleavage of C–O bonds over brominated ruthenium catalyst. Angew. Chem. Int. Ed. 60, 12513–12523 (2021).

    CAS  Article  Google Scholar 

  21. 21.

    Xian, J., Hua, Q., Jiang, Z., Ma, Y. & Huang, W. Size-dependent interaction of the poly(N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals. Langmuir 28, 6736–6741 (2012).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Arrigo, R. et al. Nature of the N–Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal. 5, 2740–2753 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Wu, B., Huang, H., Yang, J., Zheng, N. & Fu, G. Selective hydrogenation of α,β-unsaturated aldehydes catalyzed by amine-capped platinum–cobalt nanocrystals. Angew. Chem. Int. Ed. 51, 3440–3443 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Du, Y., Chen, H., Chen, R. & Xu, N. Poisoning effect of some nitrogen compounds on nano-sized nickel catalysts in p-nitrophenol hydrogenation. Chem. Eng. J. 125, 9–14 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    Chen, J. J. & Winograd, N. The adsorption and decomposition of methylamine on Pd (111). Surf. Sci. 326, 285–300 (1995).

    CAS  Article  Google Scholar 

  26. 26.

    Ding, S. Y. et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Vogt, L., Schulte, E., Collins, S. & Quaino, P. Theoretical and FTIR investigations of the acetonitrile hydrogenation pathways on platinum. Top. Catal. 62, 1076–1085 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    He, Q., Kusumi, R., Kimura, S., Kim, U. J. & Wada, M. Cationic hydrogels prepared from regioselectively azidated (1-3)-α-d-glucan via crosslinking and amination: physical and adsorption properties. Carbohydr. Polym. 245, 116543 (2020).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Thorn, K. A. & Kennedy, K. R. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose. Environ. Sci. Technol. 36, 3787–3796 (2002).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Yu, Y., Zhao, Y., Huang, T. & Liu, H. Shape-controlled synthesis of palladium nanocrystals by microwave irradiation. Pure Appl. Chem. 81, 2377–2385 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    Rahaman, M., Dutta, A. & Broekmann, P. Size-dependent activity of palladium nanoparticles: efficient conversion of CO2 into formate at low overpotentials. ChemSusChem 10, 1733–1741 (2017).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Rao, R. G. et al. Interfacial charge distributions in carbon-supported palladium catalysts. Nat. Commun. 8, 340 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Chen, G. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 15, 564–569 (2016).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Bachiller-Baeza, B. & Anderson, J. A. FTIR and reaction studies of styrene and toluene over silica–zirconia-supported heteropoly acid catalysts. J. Catal. 212, 231–239 (2002).

    CAS  Article  Google Scholar 

  35. 35.

    Hamm, G. et al. The adsorption of benzene on Pd(111) and ordered Sn/Pd(111) surface alloys. Surf. Sci. 562, 170–182 (2004).

    CAS  Article  Google Scholar 

  36. 36.

    Ioannides, T. & Verykios, X. E. The interaction of benzene and toluene with Rh dispersed on SiO2, Al2O3, and TiO2 carriers. J. Catal. 143, 175–186 (1993).

    CAS  Article  Google Scholar 

  37. 37.

    Campisi, S. et al. Selectivity control in palladium-catalyzed alcohol oxidation through selective blocking of active sites. J. Phys. Chem. C. 120, 14027–14033 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Komanoya, T., Kinemura, T., Kita, Y., Kamata, K. & Hara, M. Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds. J. Am. Chem. Soc. 139, 11493–11499 (2017).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Lu, J. et al. Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition. Nat. Commun. 5, 3264 (2014).

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Wang, X. et al. Palladium–platinum core–shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 6, 7594 (2015).

    PubMed  Article  Google Scholar 

  41. 41.

    Tait, S. L. et al. One-dimensional self-assembled molecular chains on Cu(100): interplay between surface-assisted coordination chemistry and substrate commensurability. J. Phys. Chem. C. 111, 10982–10987 (2007).

    CAS  Article  Google Scholar 

  42. 42.

    Abdala, P. M. et al. Scientific opportunities for heterogeneous catalysis research at the SuperXAS and SNBL beam lines. Chim. (Aarau) 66, 699–705 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    Vasiurrahaman, M. The hydrogenation of toluene and o-, m-, and p-xylene over palladium ii. Reaction model. J. Catal. 127, 267–275 (1991).

    Article  Google Scholar 

  44. 44.

    Poondi, D. & Albert Vannice, M. Competitive hydrogenation of benzene and toluene on palladium and platinum catalysts. J. Catal. 161, 742–751 (1996).

    CAS  Article  Google Scholar 

  45. 45.

    Stolbov, S. & Rahman, T. S. First-principles study of some factors controlling the rate of ammonia decomposition on Ni and Pd surfaces. J. Chem. Phys. 123, 204716 (2005).

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Hoft, R. C., Ford, M. J., McDonagh, A. M. & Cortie, M. B. Adsorption of amine compounds on the Au(111) surface: a density functional study. J. Phys. Chem. C. 111, 13886–13891 (2007).

    CAS  Article  Google Scholar 

  47. 47.

    Dai, C. et al. Deactivation study of Pd/Al2O3 catalyst for hydrogenation of benzonitrile in fixed-bed reactor. Appl. Catal. A Gen. 538, 199–206 (2017).

    CAS  Article  Google Scholar 

  48. 48.

    Guo, M. et al. Improving catalytic hydrogenation performance of Pd nanoparticles by electronic modulation using phosphine ligands. ACS Catal. 8, 6476–6485 (2018).

    CAS  Article  Google Scholar 

  49. 49.

    Tsunoyama, H., Ichikuni, N., Sakurai, H. & Tsukuda, T. Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 131, 7086–7093 (2009).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Pushkarev, V. V., An, K., Alayoglu, S., Beaumont, S. K. & Somorjai, G. A. Hydrogenation of benzene and toluene over size controlled Pt/SBA-15 catalysts: elucidation of the Pt particle size effect on reaction kinetics. J. Catal. 292, 64–72 (2012).

    CAS  Article  Google Scholar 

  51. 51.

    Verma, D. K. & des Tombe, K. Benzene in gasoline and crude oil: occupational and environmental implications. AIHA J. 63, 225–230 (2002).

    CAS  Article  Google Scholar 

  52. 52.

    Galadima, A. & Muraza, O. Role of zeolite catalysts for benzene removal from gasoline via alkylation: A review. Microporous Mesoporous Mater. 213, 169–180 (2015).

    CAS  Article  Google Scholar 

  53. 53.

    Savva, P. G. et al. Benzene hydrogenation over Ni/Al2O3 catalysts prepared by conventional and sol–gel techniques. Appl. Catal. B 79, 199–207 (2008).

    CAS  Article  Google Scholar 

  54. 54.

    Wang, Q. et al. Solid micellar Ru single-atom catalysts for the water-free hydrogenation of CO2 to formic acid. Appl. Catal. B 290, 120036 (2021).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Solvay and the University of Lille for a stipend for the PhD research of D.W. and financial support of this work. The authors thank the Chevreul Institute (FR 2638) for its help in the development of this work. The authors thank O. Gardoll, B. Revel and M. Capron for characterizations of the catalysts. The Chevreul Institute and the Microscopy Platform in Lille are supported by the Ministère de l’Enseignement Supérieur et de la Recherche et de l’Innovation, the CNRS, the Région Hauts-de-France, the Métropole Européenne de Lille and the Fonds Européen de Développement des Régions.

Author information

Affiliations

Authors

Contributions

V.V.O., A.Y.K. and D.W. conceived the idea for this work. All authors contributed to the design of the experimental setup and experimental procedures. D.W. performed most of the experiments with the help of B.G. and W.Y.H. TEM analysis was performed by A.A., W.B., M.M. and O.E. XPS analysis was performed by E.I.V. O.V.S performed the XAS analysis, and N.N. performed the ToF-SIMS measurements. The project was directed by A.Y.K., V.V.O and W.Z. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Andrei Y. Khodakov or Vitaly V. Ordomsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Tables 1–3 and references.

Source data

Source Data Fig. 2

Raw data for Fig. 2

Source Data Fig. 7

Raw data for Fig. 7

Source Data Fig. 8

Raw data for Fig. 8

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Baaziz, W., Gu, B. et al. Surface molecular imprinting over supported metal catalysts for size-dependent selective hydrogenation reactions. Nat Catal 4, 595–606 (2021). https://doi.org/10.1038/s41929-021-00649-3

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing