Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemical and biological catalysis for plastics recycling and upcycling


Plastics pollution is causing an environmental crisis, prompting the development of new approaches for recycling, and upcycling. Here, we review challenges and opportunities in chemical and biological catalysis for plastics deconstruction, recycling, and upcycling. We stress the need for rigorous characterization and use of widely available substrates, such that catalyst performance can be compared across studies. Where appropriate, we draw parallels between catalysis on biomass and plastics, as both substrates are low-value, solid, recalcitrant polymers. Innovations in catalyst design and reaction engineering are needed to overcome kinetic and thermodynamic limitations of plastics deconstruction. Either chemical and biological catalysts will need to act interfacially, where catalysts function at a solid surface, or polymers will need to be solubilized or processed to smaller intermediates to facilitate improved catalyst–substrate interaction. Overall, developing catalyst-driven technologies for plastics deconstruction and upcycling is critical to incentivize improved plastics reclamation and reduce the severe global burden of plastic waste.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Annual global market size of commodity plastics in MMT yr−1.
Fig. 2: Substrate characterization flowchart.
Fig. 3: Simplified model to illustrate thermodynamic and kinetic control in polymer upcycling.
Fig. 4: Opportunities in polyolefin upcycling via the olefin-intermediate process.
Fig. 5: Depolymerization of C–N- and C–O-linked polymers for closed-loop recycling or open-loop upcycling.
Fig. 6: Opportunities in biological processes for deconstruction and upcycling of polymers.


  1. 1.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    Andrady, A. L. Marine Anthropogenic Litter (eds. Bergmann, M. et al.) 57–72 (Springer International Publishing, 2015).

  3. 3.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Nicholson, S. R., Rorrer, N. A., Carpenter, A. C. & Beckham, G. T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 5, 673–686 (2021). This article estimates the supply-chain energy requirements and greenhouse gas emissions associated with US plastics consumption, providing a foundation on which to compare emerging technologies in the field of the circular plastics economy.

    CAS  Article  Google Scholar 

  5. 5.

    The New Plastics Economy—Rethinking The Future of Plastics (Ellen Macarthur Foundation & McKinsey & Company, 2016).

  6. 6.

    Ragaert, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 24–58 (2017).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article  CAS  Google Scholar 

  8. 8.

    Garcia, J. M. & Robertson, M. L. The future of plastics recycling. Science 358, 870–872 (2017).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Himmel, M. E. et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804–807 (2007).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 (2020). This perspective summarizes the existing literature on the rates of plastic degradation in the environment and implements a specific surface degradation rate as a metric to evaluate the degradation half-lives of a variety of plastics under various environmental conditions.

    CAS  Article  Google Scholar 

  11. 11.

    Rudroff, F. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 1, 12–22 (2018).

    Article  Google Scholar 

  12. 12.

    Ebnesajjad, S. in Chemical Resistance of Engineering Thermoplastics (eds. Baur, E. et al.) xiii–xxv (William Andrew Publishing, 2016).

  13. 13.

    Gibbs, J. H. Nature of the glass transition in polymers. J. Chem. Phys. 25, 185–186 (1956).

    CAS  Article  Google Scholar 

  14. 14.

    Fox, T. G. & Flory, P. J. The glass temperature and related properties of polystyrene. Influence of molecular weight. J. Polym. Sci. 14, 315–319 (1954).

    CAS  Article  Google Scholar 

  15. 15.

    Teator, A. J. & Leibfarth, F. A. Catalyst-controlled stereoselective cationic polymerization of vinyl ethers. Science 363, 1439–1443 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Mohan, T. P., George, A. P. & Kanny, K. Combined effect of isophthalic acid and polyethylene glycol in polyethylene terephthalate polymer on thermal, mechanical, and gas transport properties. J. Appl. Polym. Sci. 126, 536–543 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Gabriel, C. Influence of molecular structure on rheological properties of polyethylenes. Rheol. Acta 37, 7–20 (1998).

    CAS  Article  Google Scholar 

  19. 19.

    Rennie, A. R. in Mechanical Properties and Testing of Polymers: An A–Z Reference (ed. Swallowe, G. M.) 248 (Springer Netherlands, 1999).

  20. 20.

    Kamelian, F. S., Saljoughi, E., Nasirabadi, P. S. & Mousavi, S. M. Modifications and research potentials of acrylonitrile/butadiene/styrene (ABS) membranes: a review. Polym. Compos. 39, 2835–2846 (2017).

    Article  CAS  Google Scholar 

  21. 21.

    Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E. & Purnell, P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179–199 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Daniels, P. H. A brief overview of theories of PVC plasticization and methods used to evaluate PVC–plasticizer interaction. J. Vinyl Addit. Techn. 15, 219–223 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    Andrady, A. L. & Neal, M. A. Applications and societal benefits of plastics. Phil. Trans. R. Soc. Lond. B Biol. Sci. 364, 1977–1984 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    Sluiter, J. B., Ruiz, R. O., Scarlata, C. J., Sluiter, A. D. & Templeton, D. W. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J. Agric. Food Chem. 58, 9043–9053 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Gohil, R. M. Morphology–property relationship in oriented PET films: microstructural reorganization during heat treatment. J. Appl. Polym. Sci. 52, 925–944 (1994).

    CAS  Article  Google Scholar 

  26. 26.

    Schick, C. Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal. Bioanal. Chem. 395, 1589–1611 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Nielen, M. W. F. Maldi time-of-flight mass spectrometry of synthetic polymers. Mass Spectrom. Rev. 18, 309–344 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    Malkin, A. Y. A. The state of the art in the rheology of polymers: achievements and challenges. Polym. Sci. Ser. A 51, 80–102 (2009).

    Article  Google Scholar 

  29. 29.

    Ko, Y. C., Ratner, B. D. & Hoffman, A. S. Characterization of hydrophilic—hydrophobic polymeric surfaces by contact angle measurements. J. Colloid Interface Sci. 82, 25–37 (1981).

    CAS  Article  Google Scholar 

  30. 30.

    Argyle, M. D. & Bartholomew, C. H. Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5, 145–269 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Saalwächter, K. in New Developments in NMR (eds. Zhang, R. et al.) 1–22 (Royal Society of Chemistry, 2019).

  32. 32.

    Camacho, W. & Karlsson, S. NIR, DSC, and FTIR as quantitative methods for compositional analysis of blends of polymers obtained from recycled mixed plastic waste. Polym. Eng. Sci. 41, 1626–1635 (2001).

    CAS  Article  Google Scholar 

  33. 33.

    Hiller, W. et al. On-line coupling of high temperature GPC and 1H NMR for the analysis of polymers. J. Magn. Reson. 183, 290–302 (2006).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Boldon, L., Laliberte, F. & Liu, L. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application. Nano Rev. 6, 25661 (2015).

    PubMed  Article  Google Scholar 

  35. 35.

    Materazzi, S. Thermogravimetry—infrared spectroscopy (TG-FTIR) coupled analysis. Appl. Spectrosc. Rev. 32, 385–404 (1997).

    CAS  Article  Google Scholar 

  36. 36.

    Smolders, K. & Baeyens, J. Thermal degradation of PMMA in fluidised beds. Waste Manag. 24, 849–857 (2004).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Pifer, A. & Sen, A. Chemical recycling of plastics to useful organic compounds by oxidative degradation. Angew. Chem. Int. Ed. 37, 3306–3308 (1998). This communication reports the oxidative depolymerization of a variety of polymers (polystyrene, polyethylene, polypropylene, poly(methyl methacrylate) and so on) using oxygen and nitrogen oxides, successfully obtaining small molecules from these plastics under relatively mild conditions.

  38. 38.

    Takuma, K., Uemichi, Y. & Ayame, A. Product distribution from catalytic degradation of polyethylene over H-gallosilicate. Appl. Catal. A Gen. 192, 273–280 (2000).

    CAS  Article  Google Scholar 

  39. 39.

    Renzini, M. S., Sedran, U. & Pierella, L. B. H-ZSM-11 and Zn-ZSM-11 zeolites and their applications in the catalytic transformation of LDPE. J. Anal. Appl. Pyrol. 86, 215–220 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    Beydoun, K. & Klankermayer, J. Efficient plastic waste recycling to value-added products by integrated biomass processing. ChemSusChem 13, 488–492 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Jehanno, C., Pérez-Madrigal, M. M., Demarteau, J., Sardon, H. & Dove, A. P. Organocatalysis for depolymerisation. Polym. Chem. 10, 172–186 (2018).

    Article  Google Scholar 

  42. 42.

    Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A. & Aroua, M. K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 115, 308–326 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Huang, J. B., Zeng, G. S., Li, X. S., Cheng, X. C. & Tong, H. Theoretical studies on bond dissociation enthalpies for model compounds of typical plastic polymers. IOP Conf. Ser. Earth Environ. Sci. 167, 012029 (2018).

    Article  Google Scholar 

  44. 44.

    Westerhout, R. W. J., Waanders, J. & Kuipers, J. A. M. Kinetics of the low-temperature pyrolysis of polyethene, polypropene, and polystyrene modeling, experimental determination, and comparison with literature models and data. Ind. Eng. Chem. Res. 36, 1955–1964 (1997).

    CAS  Article  Google Scholar 

  45. 45.

    Wong, S. L., Ngadi, N., Abdullah, T. A. T. & Inuwa, I. M. Current state and future prospects of plastic waste as source of fuel: a review. Renew. Sust. Energy Rev. 50, 1167–1180 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    Aishwarya, K. N. & Sindhu, N. Microwave assisted pyrolysis of plastic waste. Proc. Technol. 25, 990–997 (2016).

    Article  Google Scholar 

  47. 47.

    Ding, K. et al. Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Convers. Manag. 196, 1316–1325 (2019).

    CAS  Article  Google Scholar 

  48. 48.

    Goto, M. Chemical recycling of plastics using sub- and supercritical fluids. J. Supercrit. Fluids 47, 500–507 (2009).

    CAS  Article  Google Scholar 

  49. 49.

    Kamimura, A. & Yamamoto, S. An efficient method to depolymerize polyamide plastics: a new use of ionic liquids. Org. Lett. 9, 2533–2535 (2007). This article describes the depolymerization of polyamides to produce ϵ-caprolactam, which was catalysed by ionic liquids that also served as the reaction solvent, demonstrating a relatively simple strategy to produce small molecules from polyamide plastics.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Whiston, K., Forsyth, S. & Seddon, K. R. Ionic liquid solvents and a process for the depolymerization of polyamides. WIPO patent WO2009016378A3 (2009).

  51. 51.

    Liu, F., Cui, X., Yu, S., Li, Z. & Ge, X. Hydrolysis reaction of poly(ethylene terephthalate) using ionic liquids as solvent and catalyst. J. Appl. Polym. Sci. 114, 3561–3565 (2009).

    CAS  Article  Google Scholar 

  52. 52.

    Song, X. et al. Hydrolysis of polycarbonate catalyzed by ionic liquid [Bmim][Ac]. J. Hazard. Mater. 244–245, 204–208 (2013).

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Kamimura, A., Yamamoto, S. & Yamada, K. Depolymerization of unsaturated polyesters and waste fiber-reinforced plastics by using ionic liquids: the use of microwaves to accelerate the reaction rate. ChemSusChem 4, 644–649 (2011).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Bockstal, L., Berchem, T., Schmetz, Q. & Richel, A. Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: a review. J. Clean. Prod. 236, 117574 (2019).

    CAS  Article  Google Scholar 

  55. 55.

    Jablonský, M., Škulcová, A. & Šima, J. Use of deep eutectic solvents in polymer chemistry—a review. Molecules 24, 3978 (2019).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  56. 56.

    Lucarini, M. & Pedulli, G. F. Free radical intermediates in the inhibition of the autoxidation reaction. Chem. Soc. Rev. 39, 2106–2119 (2010).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Ügdüler, S., VanGeem, K. M., Roosen, M., Delbeke, E. I. P. & De Meester, S. Challenges and opportunities of solvent-based additive extraction methods for plastic recycling. Waste Manag. 104, 148–182 (2020).

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Mosier, N. et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Vandenburg, H. J. et al. Critical review: analytical extraction of additives from polymers. Analyst 122, 101R–116R (1997).

    CAS  Article  Google Scholar 

  60. 60.

    Zhao, Y.-B., Lv, X.-D. & Ni, H.-G. Solvent-based separation and recycling of waste plastics: a review. Chemosphere 209, 707–720 (2018).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Anastas, P. & Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010).

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Sheldon, R. A. The E factor: fifteen years on. Green Chem. 9, 1273–1283 (2007).

    CAS  Article  Google Scholar 

  63. 63.

    Biddy, M. J. et al. The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass. ACS Sustain. Chem. Eng. 4, 3196–3211 (2016).

    CAS  Article  Google Scholar 

  64. 64.

    Li, K. & Sun, Y. Electrocatalytic upgrading of biomass-derived intermediate compounds to value-added products. Chem. Eur. J. 24, 18258–18270 (2018).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Jiang, T. et al. STEP polymer degradation: solar thermo-coupled electrochemical depolymerization of plastics to generate useful fuel plus abundant hydrogen. Sol. Energy Mater. Sol. Cells 204, 110208 (2020).

    CAS  Article  Google Scholar 

  66. 66.

    Chen, T. et al. Photo-induced depolymerisation: recent advances and future challenges. ChemPhotoChem 3, 1059–1076 (2019).

    CAS  Article  Google Scholar 

  67. 67.

    Schneider, J. et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Thomas, R. T. & Sandhyarani, N. Enhancement in the photocatalytic degradation of low density polyethylene–TiO2 nanocomposite films under solar irradiation. RSC Adv. 3, 14080–14087 (2013).

    CAS  Article  Google Scholar 

  69. 69.

    Uekert, T., Kasap, H. & Reisner, E. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. J. Am. Chem. Soc. 141, 15201–15210 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Achilias, D. S. in Microwave-Assisted Polymer Synthesis (eds. Hoogenboom, R. et al.) 309–346 (Springer International Publishing, 2016).

  71. 71.

    Achilias, D. S. et al. Glycolytic depolymerization of PET waste in a microwave reactor. J. Appl. Polym. Sci. 118, 3066–3073 (2010).

    CAS  Article  Google Scholar 

  72. 72.

    Siddiqui, M. N. et al. Hydrolytic depolymerization of PET in a microwave reactor. Macromol. Mater. Eng. 295, 575–584 (2010).

    CAS  Article  Google Scholar 

  73. 73.

    Klun, U. & Kržan, A. Rapid microwave induced depolymerization of polyamide-6. Polymer 41, 4361–4365 (2000).

    CAS  Article  Google Scholar 

  74. 74.

    Song, X., Zhang, S. & Zhang, D. Catalysis investigation of PET depolymerization under metal oxides by microwave irradiation. J. Appl. Polym. Sci. 117, 3155–3159 (2010).

    CAS  Google Scholar 

  75. 75.

    Bäckström, E., Odelius, K. & Hakkarainen, M. Trash to treasure: microwave-assisted conversion of polyethylene to functional chemicals. Ind. Eng. Chem. Res. 56, 14814–14821 (2017). This article describes a method for depolymerization of LDPE into small dicarboxylic acids in a dilute aqueous nitric acid solution by employing microwave irradiation to promote the degradation, shortening the reaction time compared with conventional heating, and resulting in high product yields.

    Article  CAS  Google Scholar 

  76. 76.

    Alberti, C., Figueira, R., Hofmann, M., Koschke, S. & Enthaler, S. Chemical recycling of end-of-life polyamide 6 via ring closing depolymerization. ChemistrySelect 4, 12638–12642 (2019).

    CAS  Article  Google Scholar 

  77. 77.

    Caruso, M. M. et al. Mechanically-induced chemical changes in polymeric materials. Chem. Rev. 109, 5755–5798 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Amirjalayer, S., Fuchs, H. & Marx, D. Understanding the mechanocatalytic conversion of biomass: a low-energy one-step reaction mechanism by applying mechanical force. Angew. Chem. Int. Ed. 58, 5232–5235 (2019).

    CAS  Article  Google Scholar 

  79. 79.

    Hick, S. M. et al. Mechanocatalysis for biomass-derived chemicals and fuels. Green Chem. 12, 468–474 (2010).

    CAS  Article  Google Scholar 

  80. 80.

    Shende, V. S., Saptal, V. B. & Bhanage, B. M. Recent advances utilized in the recycling of homogeneous catalysis. Chem. Rec. 19, 2022–2043 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Janssen, M., Müller, C. & Vogt, D. Recent advances in the recycling of homogeneous catalysts using membrane separation. Green Chem. 13, 2247–2257 (2011).

    CAS  Article  Google Scholar 

  82. 82.

    McBride, K., Gaide, T., Vorholt, A., Behr, A. & Sundmacher, K. Thermomorphic solvent selection for homogeneous catalyst recovery based on COSMO-RS. Chem. Eng. Process. 99, 97–106 (2016).

    CAS  Article  Google Scholar 

  83. 83.

    Van Leeuwen, P. W. N. M. Decomposition pathways of homogeneous catalysts. Appl. Catal. A Gen. 212, 61–81 (2001).

    CAS  Article  Google Scholar 

  84. 84.

    Polizzi, K. M., Bommarius, A. S., Broering, J. M. & Chaparro-Riggers, J. F. Stability of biocatalysts. Curr. Opin. Chem. Biol. 11, 220–225 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Bommarius, A. S. & Paye, M. F. Stabilizing biocatalysts. Chem. Soc. Rev. 42, 6534–6565 (2013).

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Jones, C. W. On the stability and recyclability of supported metal–ligand complex catalysts: myths, misconceptions and critical research needs. Top. Catal. 53, 942–952 (2010).

    CAS  Article  Google Scholar 

  87. 87.

    Huang, Z. et al. Highly active and recyclable heterogeneous iridium pincer catalysts for transfer dehydrogenation of alkanes. Adv. Synth. Catal. 351, 188–206 (2009).

    CAS  Article  Google Scholar 

  88. 88.

    Jia, X., Qin, C., Friedberger, T., Guan, Z. & Huang, Z. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Sci. Adv. 2, e1501591 (2016). This article reports on a method for the degradation of polyethylene to light alkanes through tandem catalytic cross-alkane metathesis by employing a homogeneous Ir and heterogeneous Re catalyst, with the ability to tailor selectivity towards alkanes in the diesel range or waxes by changing the identity of the Ir complex.

  89. 89.

    Barth, M. et al. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol. J. 11, 1082–1087 (2016).

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Lopez, G., Artetxe, M., Amutio, M., Bilbao, J. & Olazar, M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sust. Energy Rev. 73, 346–368 (2017).

    CAS  Article  Google Scholar 

  91. 91.

    Kunwar, B., Cheng, H. N., Chandrashekaran, S. R. & Sharma, B. K. Plastics to fuel: a review. Renew. Sust. Energy Rev. 54, 421–428 (2016).

    CAS  Article  Google Scholar 

  92. 92.

    Al-Salem, S. M., Lettieri, P. & Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag. 29, 2625–2643 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G. & Dutta, A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manag. 197, 177–198 (2017).

    CAS  Article  Google Scholar 

  94. 94.

    Serrano, D. P., Aguado, J. & Escola, J. M. Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals. ACS Catal. 2, 1924–1941 (2012).

    CAS  Article  Google Scholar 

  95. 95.

    Schenk, N. J., Biesbroek, A., Heeres, A. & Heeres, H. J. Process for the preparation of aromatic compounds. US patent US20170247617A1 (2017).

  96. 96.

    Ding, W., Liang, J. & Anderson, L. L. Hydrocracking and hydroisomerization of high-density polyethylene and waste plastic over zeolite and silica–alumina-supported Ni and Ni–Mo sulfides. Energy Fuels 11, 1219–1224 (1997).

    CAS  Article  Google Scholar 

  97. 97.

    Escola, J. M. et al. Catalytic hydroreforming of the polyethylene thermal cracking oil over Ni supported hierarchical zeolites and mesostructured aluminosilicates. Appl. Catal. B 106, 405–415 (2011).

    CAS  Article  Google Scholar 

  98. 98.

    Aguado, J. Deactivation and regeneration of a Ni supported hierarchical Beta zeolite catalyst used in the hydroreforming of the oil produced by LDPE thermal cracking. Fuel 109, 679–686 (2013).

    CAS  Article  Google Scholar 

  99. 99.

    Sriningsih, W. et al. Fuel production from LDPE plastic waste over natural zeolite supported Ni, Ni–Mo, Co and Co–Mo metals. Procedia Environ. Sci. 20, 215–224 (2014).

    CAS  Article  Google Scholar 

  100. 100.

    Bin Jumah, A., Anbumuthu, V., Tedstone, A. A. & Garforth, A. A. Catalyzing the hydrocracking of low density polyethylene. Ind. Eng. Chem. Res. 58, 20601–20609 (2019).

    CAS  Article  Google Scholar 

  101. 101.

    Akah, A., Hernandez-Martinez, J., Rallan, C. & Garforth, A. A. Enhanced feedstock recycling of post-consumer plastic waste. Chem. Eng. Trans. 43, 2395–2400 (2015).

    Google Scholar 

  102. 102.

    Hibbitts, D. D., Flaherty, D. W. & Iglesia, E. Role of branching on the rate and mechanism of C–C cleavage in alkanes on metal surfaces. ACS Catal. 6, 469–482 (2016).

    CAS  Article  Google Scholar 

  103. 103.

    Rorrer, J. E., Beckham, G. T. & Román-Leshkov, Y. Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions. JACS Au. 1, 8–12 (2020). This article reports a strategy for the depolymerization of LDPE through hydrogenolysis catalysed by Ru/C, with control over the product selectivity ranging from long-chain liquid alkanes to methane.

    Article  CAS  Google Scholar 

  104. 104.

    Tennakoon, A. et al. Catalytic upcycling of high-density polyethylene via a processive mechanism. Nat. Catal. 3, 893–901 (2020). This article describes the depolymerization of HDPE using an elegant materials design approach with a mesoporous shell/active site/core catalyst system in which Pt catalysts are situated at the base of mesopores that can encapsulate hydrocarbon chains, mimicking the active site architecture of enzyme-catalysed processes to obtain a narrow distribution of diesel and lubricant-range alkane products.

    CAS  Article  Google Scholar 

  105. 105.

    Celik, G. et al. Upcycling single-use polyethylene into high-quality liquid products. ACS Cent. Sci. 5, 1795–1803 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Dufaud, V. & Basset, J.-M. Catalytic hydrogenolysis at low temperature and pressure of polyethylene and polypropylene to diesels or lower alkanes by a zirconium hydride supported on silica‐alumina: a step toward polyolefin degradation by the microscopic reverse of Ziegler–Natta polymerization. Angew. Chem. Int. Ed. 37, 806–810 (1998).

    CAS  Article  Google Scholar 

  107. 107.

    Coates, G. W., Hustad, P. D. & Reinartz, S. Catalysts for the living insertion polymerization of alkenes: access to new polyolefin architectures using Ziegler–Natta chemistry. Angew. Chem. Int. Ed. 41, 2236–2257 (2002).

    CAS  Article  Google Scholar 

  108. 108.

    Shamiri, A. et al. The influence of Ziegler–Natta and metallocene catalysts on polyolefin structure, properties, and processing ability. Materials 7, 5069–5108 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Westhues, S., Idel, J. & Klankermayer, J. Molecular catalyst systems as key enablers for tailored polyesters and polycarbonate recycling concepts. Sci. Adv. 4, eaat9669 (2018). This article reports the hydrogenolysis of poly(lactic acid), PET and polycarbonate using a molecular Ru catalyst, achieving high conversion and selectivity to small molecule diol products with high tolerance towards polymer additives, as demonstrated by effective depolymerization of a variety of consumer-grade plastics.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Krall, M. E. et al. Controlled hydrogenative depolymerization of polyesters and polycarbonates catalyzed by ruthenium(ii) PNN pincer complexes. Chem. Commun. 50, 4884–4887 (2014).

    CAS  Article  Google Scholar 

  111. 111.

    Ellis, L. D. et al. Tandem heterogeneous catalysis for polyethylene depolymerization via an olefin-intermediate process. ACS Sustain. Chem. Eng. 9, 623–628 (2021). This article describes a method for depolymerizing polyethylene to liquid alkanes using tandem dehydrogenation and olefin cross-metathesis with fully heterogeneous Pt and Re catalysts, and broadly describes how this strategy is probably one of many potential examples of an olefin-intermediate process.

  112. 112.

    Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020). This report outlines an exciting, solvent-free strategy to convert polyethylene to alkylaromatics using a tandem hydrogenolysis/aromatization approach by coupling the exothermic hydrogenolysis and endothermic aromatization to achieve a thermodynamically favourable process.

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Ahmad, N., Abnisa, F. & Wan Daud, W. M. A. Potential use of natural rubber to produce liquid fuels using hydrous pyrolysis—a review. RSC Adv. 6, 68906–68921 (2016).

    CAS  Article  Google Scholar 

  114. 114.

    Smith, R. F., Boothroyd, S. C., Thompson, R. L. & Khosravi, E. A facile route for rubber breakdown via cross metathesis reactions. Green Chem. 18, 3448–3455 (2016).

    CAS  Article  Google Scholar 

  115. 115.

    Bidange, J., Fischmeister, C. & Bruneau, C. Ethenolysis: a green catalytic tool to cleave carbon–carbon double bonds. Chem. Eur. J. 22, 12226–12244 (2016).

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Partenheimer, W. Valuable oxygenates by aerobic oxidation of polymers using metal/bromide homogeneous catalysts. Catal. Today 81, 117–135 (2003).

    CAS  Article  Google Scholar 

  117. 117.

    Tomás, R. A. F., Bordado, J. C. M. & Gomes, J. F. P. p-Xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development. Chem. Rev. 113, 7421–7469 (2013).

    PubMed  Article  CAS  Google Scholar 

  118. 118.

    Murakami, M. & Matsuda, T. Metal-catalysed cleavage of carbon–carbon bonds. ChemComm 47, 1100–1105 (2011).

    CAS  Google Scholar 

  119. 119.

    Chen, P., Billett, B. A., Tsukamoto, T. & Dong, G. ‘Cut and sew’ transformations via transition-metal-catalyzed carbon–carbon bond activation. ACS Catal. 7, 1340–1360 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Jun, C.-H. Transition metal-catalyzed carbon–carbon bond activation. Chem. Soc. Rev. 33, 610–618 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Souillart, L. & Cramer, N. Catalytic C–C bond activations via oxidative addition to transition metals. Chem. Rev. 115, 9410–9464 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Kim, D.-S., Park, W.-J. & Jun, C.-H. Metal–organic cooperative catalysis in C–H and C–C bond activation. Chem. Rev. 117, 8977–9015 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Zhang, X., Fevre, M., Jones, G. O. & Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 118, 839–885 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Iannone, F. et al. Ionic liquids/ZnO nanoparticles as recyclable catalyst for polycarbonate depolymerization. J. Mol. Catal. A Chem. 426, 107–116 (2017).

    CAS  Article  Google Scholar 

  125. 125.

    Zhang, Q. & Vigier, K. D. O. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108–7146 (2012).

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Wang, Q. et al. Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene terephthalate) (PET). Green Chem. 17, 2473–2479 (2015).

    CAS  Article  Google Scholar 

  127. 127.

    Raheem, A. B. et al. Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: a review. J. Clean. Prod. 225, 1052–1064 (2019).

    CAS  Article  Google Scholar 

  128. 128.

    Al-Sabagh, A. M., Yehia, F. Z., Eshaq, Gh., Rabie, A. M. & ElMetwally, A. E.Greener routes for recycling of polyethylene terephthalate. Egypt. J. Pet. 25, 53–64 (2016).

    Article  Google Scholar 

  129. 129.

    Chiaie, K. R. D., McMahon, F. R., Williams, E. J., Price, M. J. & Dove, A. P. Dual-catalytic depolymerization of polyethylene terephthalate (PET). Polym. Chem. 11, 1450–1453 (2020). This communication employs Lewis acidbase pairs, in which Zr acid catalysts are used to activate polymer carbonyls, and amine bases are used to increase the reaction rate of the nucleophile, to achieve enhanced depolymerization conversions compared with either of the components in isolation.

    Article  Google Scholar 

  130. 130.

    Kumar, A. et al. Hydrogenative depolymerization of nylons. J. Am. Chem. Soc. 142, 14267–14275 (2020). This article reports the hydrogenative depolymerization of nylons, polyamides, and polyurethanes to produce small-molecule products, employing a series of Ru catalysts to generate products, which are then capable of being repolymerized to regenerate polymers with approximately similar molecular weight to the starting materials.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Gausas, L. et al. Catalytic hydrogenation of polyurethanes to base chemicals: from model systems to commercial and end-of-life polyurethane materials. JACS Au. 1, 517–524 (2021). This article reports the use of catalytic hydrogenation of polyurethanes using an Ir catalyst, as well as other metal complexes, to obtain small-molecule products from a range of polyurethane substrates, including commercial-grade materials.

    CAS  Article  Google Scholar 

  132. 132.

    Lo, J. N., Nutt, S. R. & Williams, T. J. Recycling benzoxazine–epoxy composites via catalytic oxidation. ACS Sustain. Chem. Eng. 6, 7227–7231 (2018). This article discusses work in the depolymerization of benzoxazineepoxy carbon fibre-reinforced composites for recovery of the fibres through oxidation by an Ru catalyst, followed by hydrolysis to cleave the resin and allow for recovery of intact carbon fibres.

    CAS  Article  Google Scholar 

  133. 133.

    Navarro, C. A. et al. Mechanism and catalysis of oxidative degradation of fiber-reinforced epoxy composites. Top. Catal. 61, 704–709 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Rorrer, N. A. et al. Combining reclaimed PET with bio-based monomers enables plastics upcycling. Joule 3, 1006–1027 (2019).

    CAS  Article  Google Scholar 

  135. 135.

    Kárpáti, L., Fogarassy, F., Kovácsik, D. & Vargha, V. One-pot depolymerization and polycondensation of PET based random oligo- and polyesters. J. Polym. Environ. 27, 2167–2181 (2019).

    Article  CAS  Google Scholar 

  136. 136.

    Fukushima, K. et al. Advanced chemical recycling of poly(ethylene terephthalate) through organocatalytic aminolysis. Polym. Chem. 4, 1610–1616 (2013).

    CAS  Article  Google Scholar 

  137. 137.

    Gardea, F. et al. Hybrid poly(aryl ether sulfone amide)s for advanced thermoplastic composites. Macromol. Chem. Phys. 215, 2260–2267 (2014).

    CAS  Article  Google Scholar 

  138. 138.

    Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. 7, 866–880 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Wei, R. et al. Possibilities and limitations of biotechnological plastic degradation and recycling. Nat. Catal. 3, 867–871 (2020).

    CAS  Article  Google Scholar 

  140. 140.

    Payne, C. M. et al. Fungal cellulases. Chem. Rev. 115, 1308–1448 (2015).

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    DiCosimo, R., McAuliffe, J., J. Poulose, A. & Bohlmann, G. Industrial use of immobilized enzymes. Chem. Soc. Rev. 42, 6437–6474 (2013).

    CAS  PubMed  Article  Google Scholar 

  142. 142.

    Vaaje‐Kolstad, G., Horn, S. J., Sørlie, M. & Eijsink, V. G. H. The chitinolytic machinery of Serratia marcescens—a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J. 280, 3028–3049 (2013).

    PubMed  Article  CAS  Google Scholar 

  143. 143.

    Kari, J., Andersen, M., Borch, K. & Westh, P. An inverse Michaelis–Menten approach for interfacial enzyme kinetics. ACS Catal. 7, 4904–4914 (2017).

    CAS  Article  Google Scholar 

  144. 144.

    Kari, J. et al. Sabatier principle for interfacial (heterogeneous) enzyme catalysis. ACS Catal. 8, 11966–11972 (2018). This study draws an important analogy between interfacial biocatalysis (which is key to enzymatic plastics deconstruction) and the Sabatier principle (which is often invoked in the design of heterogeneous catalysts). This paper applies these concepts to cellulases, but the design approach is probably translatable to plastic-degrading enzymes as well.

    CAS  Article  Google Scholar 

  145. 145.

    Kari, J. et al. A steady-state approach for inhibition of heterogeneous enzyme reactions. Biochem. J. 477, 1971–1982 (2020).

    PubMed  Article  Google Scholar 

  146. 146.

    Arnling Bååth, J., Borch, K., Jensen, K., Brask, J. & Westh, P. Comparative biochemistry of four polyester (PET) hydrolases. ChemBioChem 22, 1627–1637 (2021).

    Article  CAS  Google Scholar 

  147. 147.

    Zaks, A. & Klibanov, A. M. Enzymatic catalysis in nonaqueous solvents. J. Biol. Chem. 263, 3194–3201 (1988).

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Iyer, P. V. & Ananthanarayan, L. Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochem. 43, 1019–1032 (2008).

    CAS  Article  Google Scholar 

  149. 149.

    Moniruzzaman, M., Kamiya, N. & Goto, M. Activation and stabilization of enzymes in ionic liquids. Org. Biomol. Chem. 8, 2887–2899 (2010).

    CAS  PubMed  Article  Google Scholar 

  150. 150.

    Roth, C. et al. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Appl. Microbiol. Biotechnol. 98, 7815–7823 (2014).

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Silva, C. M. et al. Cutinase—a new tool for biomodification of synthetic fibers. J. Polym. Sci. Pol. Chem. 43, 2448–2450 (2005).

    CAS  Article  Google Scholar 

  152. 152.

    Araújo, R. et al. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. J. Biotechnol. 128, 849–857 (2007).

    PubMed  Article  CAS  Google Scholar 

  153. 153.

    Ribitsch, D. et al. Characterization of a new cutinase from Thermobifida alba for PET-surface hydrolysis. Biocatal. Biotransformation 30, 2–9 (2012).

    CAS  Article  Google Scholar 

  154. 154.

    Sulaiman, S. et al. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl. Environ. Microbiol. 78, 1556–1562 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. 155.

    Ronkvist, Å. M., Xie, W., Lu, W. & Gross, R. A. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42, 5128–5138 (2009).

    CAS  Article  Google Scholar 

  156. 156.

    Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    CAS  PubMed  Article  Google Scholar 

  157. 157.

    Han, X. et al. Structural insight into catalytic mechanism of PET hydrolase. Nat. Commun. 8, 2106 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  158. 158.

    Joo, S. et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun. 9, 382 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  159. 159.

    Austin, H. P. et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl Acad. Sci. USA 115, 4350–4357 (2018).

    Article  CAS  Google Scholar 

  160. 160.

    Palm, G. J. et al. Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nat. Commun. 10, 1717 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  161. 161.

    Knott, B. C. et al. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc. Natl Acad. Sci. USA 117, 25476–25485 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  162. 162.

    Ribitsch, D. et al. Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. Appl. Environ. Microbiol. 81, 3586–3592 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. 163.

    Várnai, A., Siika-aho, M. & Viikari, L. Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. Biotechnol. Biofuels 6, 30 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  164. 164.

    Doi, R. H. & Kosugi, A. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat. Rev. Microbiol. 2, 541–551 (2004).

    CAS  PubMed  Article  Google Scholar 

  165. 165.

    Carvalho, A. L. et al. Cellulosome assembly revealed by the crystal structure of the cohesin–dockerin complex. Proc. Natl Acad. Sci. USA 100, 13809–13814 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  166. 166.

    Resch, M. G. et al. Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy Environ. Sci. 6, 1858–1867 (2013).

    CAS  Article  Google Scholar 

  167. 167.

    Brunecky, R. et al. Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342, 1513–1516 (2013).

    CAS  PubMed  Article  Google Scholar 

  168. 168.

    Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020). This work describes a protein structure-guided design of the leaf compost cutinase enzyme for both higher stability and higher activity against PET substrates. The authors scale-up the process and demonstrate conversion of a post-consumer PET waste stream at industrially relevant enzyme loadings.

    CAS  PubMed  Article  Google Scholar 

  169. 169.

    Liu, B. et al. Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis. ChemBioChem 19, 1471–1475 (2018).

    CAS  PubMed  Article  Google Scholar 

  170. 170.

    Then, J. et al. Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca. Biotechnol. J. 10, 592–598 (2015).

    CAS  PubMed  Article  Google Scholar 

  171. 171.

    Shirke, A. N. et al. Stabilizing leaf and branch compost cutinase (LCC) with glycosylation: mechanism and effect on PET hydrolysis. Biochemistry 57, 1190–1200 (2018).

    CAS  PubMed  Article  Google Scholar 

  172. 172.

    Taniguchi, I. et al. Biodegradation of PET: current status and application aspects. ACS Catal. 9, 4089–4105 (2019).

    CAS  Article  Google Scholar 

  173. 173.

    Schreiber, L. Transport barriers made of cutin, suberin and associated waxes. Trends Plant. Sci. 15, 546–553 (2010).

    CAS  PubMed  Article  Google Scholar 

  174. 174.

    Herrero Acero, E. et al. Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules 44, 4632–4640 (2011).

    CAS  Article  Google Scholar 

  175. 175.

    Rahikainen, J. L. et al. Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Bioresour. Technol. 133, 270–278 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  176. 176.

    Vaaje-Kolstad, G. et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330, 219–222 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  177. 177.

    Deguchi, T., Kitaoka, Y., Kakezawa, M. & Nishida, T. Purification and characterization of a nylon-degrading enzyme. Appl. Environ. Microbiol. 64, 1366–1371 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  178. 178.

    Magnin, A., Pollet, E., Phalip, V. & Avérous, L. Evaluation of biological degradation of polyurethanes. Biotechnol. Adv. 39, 107457 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  179. 179.

    Albertsson, A.-C., Andersson, S. O. & Karlsson, S. The mechanism of biodegradation of polyethylene. Polym. Degrad. Stabil. 18, 73–87 (1987).

    CAS  Article  Google Scholar 

  180. 180.

    Inderthal, H., Tai, S. L. & Harrison, S. T. L. Non-hydrolyzable plastics—an interdisciplinary look at plastic bio-oxidation. Trends Biotechnol. 39, 12–23 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  181. 181.

    Wierckx, N. et al. Plastic waste as a novel substrate for industrial biotechnology. Microb. Biotechnol. 8, 900–903 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  182. 182.

    Narancic, T. & O’Connor, K. E. Microbial biotechnology addressing the plastic waste disaster. Microb. Biotechnol. 10, 1232–1235 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  183. 183.

    Linger, J. G. et al. Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl Acad. Sci. USA 111, 12013–12018 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  184. 184.

    Utomo, R. N. C. et al. Defined microbial mixed culture for utilization of polyurethane monomers. ACS Sustain. Chem. Eng. 8, 17466–17474 (2020).

    Article  CAS  Google Scholar 

  185. 185.

    Kim, H. T. et al. Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET. ACS Sustain. Chem. Eng. 7, 19396–19406 (2019).

    CAS  Article  Google Scholar 

  186. 186.

    Ward, P. G., Goff, M., Donner, M., Kaminsky, W. & O’Connor, K. E. A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ. Sci. Technol. 40, 2433–2437 (2006). This work represents an early effort in the tandem catalyticbiological approach for plastics depolymerization and biological conversion of the intermediate products to a recyclable material. Specifically, this work employed polystyrene pyrolysis and the use of a Pseudomonas putida strain to produce biodegradable polyhydroxyalkanoates.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  187. 187.

    Tiso, T. et al. Towards bio-upcycling of polyethylene terephthalate. Metab. Eng. 66, 167–178 (2021). This paper demonstrates a two-step process concept for PET upcycling using enzymatic deconstruction with a thermophilic cutinase followed by conversion of the breakdown products in Pseudomonas putida to produce multiple products, including polyurethane precursors and biodegradable plastics.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  188. 188.

    Olson, D. G., McBride, J. E., Joe Shaw, A. & Lynd, L. R. Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 23, 396–405 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  189. 189.

    Lee, S. Y. et al. A comprehensive metabolic map for production of bio-based chemicals. Nat. Catal. 2, 18–33 (2019).

    CAS  Article  Google Scholar 

  190. 190.

    Nieto-Domínguez, M. & Nikel, P. I. Intersecting xenobiology and neometabolism to bring novel chemistries to life. ChemBioChem 21, 2551–2571 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  191. 191.

    Crosby, J. R. et al. Extreme thermophiles as emerging metabolic engineering platforms. Curr. Opin. Biotechnol. 59, 55–64 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  192. 192.

    Salvador, M. et al. Microbial genes for a circular and sustainable bio-PET economy. Genes 10, 373 (2019).

    PubMed Central  Article  CAS  Google Scholar 

  193. 193.

    Espinosa, M. J. C. et al. Toward biorecycling: isolation of a soil bacterium that grows on a polyurethane oligomer and monomer. Front. Microbiol. 11, 404 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  194. 194.

    Bhaganna, P. et al. Hydrophobic substances induce water stress in microbial cells. Microb. Biotechnol. 3, 701–716 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  195. 195.

    Cregut, M., Bedas, M., Durand, M.-J. & Thouand, G. New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process. Biotechnol. Adv. 31, 1634–1647 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  196. 196.

    Heipieper, H. J., Neumann, G., Cornelissen, S. & Meinhardt, F. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl. Microbiol. Biotechnol. 74, 961–973 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references


Funding for N.A.R., L.D.E., K.P.S., Y.R.-L., and G.T.B. was provided by the US Department of Energy’s Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office and Bioenergy Technologies Office. This work was performed as part of the Bio-Optimized Technologies to Keep Thermoplastics out of Landfills and the Environment (BOTTLE) Consortium and was supported by the Advanced Manufacturing Office and Bioenergy Technologies Office under contract number DE-AC36-08GO28308 with the National Renewable Energy Laboratory, operated by the Alliance for Sustainable Energy. The BOTTLE Consortium includes members from the Massachusetts Institute of Technology, funded under contract number DE-AC36-08GO28308 with the National Renewable Energy Laboratory. J.E.M. was supported by Research England through the Expanding Excellence in England (E3) scheme. N.W. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements 863922 (MIX-UP) and 887711 (Glaukos). The scientific activities of the Bioeconomy Science Center were financially supported by the Ministry of Culture and Science within the framework of the NRW Strategieprojekt BioSC (number 313/323-400-002 13; PlastiCycle). We thank R. Clare for help with figure preparation. We thank colleagues in our research groups and collaborators for helpful discussions that have influenced many of the perspectives put forward here.

Author information




L.D.E., N.A.R., K.P.S., and G.T.B. wrote the first draft of the manuscript, which was edited and approved by all authors. All authors contributed to the intellectual efforts for the review; specifically, M.O., J.E.M., and N.W. contributed to the biological catalysis component of the review and Y.R.-L. contributed to the chemical catalysis component of the review.

Corresponding author

Correspondence to Gregg T. Beckham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Pedro Castaño, Amar Mohanty and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ellis, L.D., Rorrer, N.A., Sullivan, K.P. et al. Chemical and biological catalysis for plastics recycling and upcycling. Nat Catal 4, 539–556 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing