Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity

Abstract

The selective hydrogenation of acetylene to ethylene in ethylene-rich gas streams is an important process in the manufacture of polyethylene. Conventional thermal hydrogenation routes require temperatures above 100 °C and excess hydrogen to achieve a satisfactory C2H2 conversion efficiency. Here, we report a room-temperature electrochemical acetylene reduction system based on a layered double hydroxide (LDH)-derived copper catalyst that offers an ethylene Faradaic efficiency of up to ~80% and inhibits alkane and hydrogen formation. The system affords an acetylene conversion of over 99.9% at a flow rate of 50 ml min−1 in a simulated gas feed, yielding high-purity ethylene with an ethylene/acetylene volume ratio exceeding 105 and negligible residual hydrogen (0.08 vol.%). These acetylene conversion metrics are superior to most other state-of-the-art strategies. The findings therefore conclusively demonstrate an electrochemical strategy as a viable alternative to current technologies for acetylene-to-ethylene conversions with potential advantages in energy and atom economies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Routes for acetylene conversion in ethylene-rich gas streams.
Fig. 2: Characterization of EAR in a flow system.
Fig. 3: Characterization of the LD-Cu catalyst.
Fig. 4: Kinetic analysis of the acetylene reduction.
Fig. 5: EAR in the presence of ethylene.
Fig. 6: Full cell EAR performance evaluation and comparison.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.

References

  1. Borodziński, A. & Bond, G. C. Selective Hydrogenation of ethyne in ethane-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal. Rev. 48, 91–144 (2006).

    Article  CAS  Google Scholar 

  2. Lewis, J. D. Separation of acetylene from ethylene-bearing gases. US patent 3,837,144 (1974).

  3. Hu, T. L. et al. Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. Nat. Commun. 6, 7328 (2015).

    CAS  PubMed  Article  Google Scholar 

  4. Kenzi, T. On the retardation of catalysis. The catalytic reaction between acetylene and hydrogen. Bull. Chem. Soc. Jpn 23, 180–184 (1950).

    Article  Google Scholar 

  5. Armbruster, M. et al. Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nat. Mater. 11, 690–693 (2012).

    CAS  PubMed  Article  Google Scholar 

  6. Feng, Q. et al. Isolated single-atom Pd sites in intermetallic nanostructures: high catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 139, 7294–7301 (2017).

    CAS  PubMed  Article  Google Scholar 

  7. Zhou, S. et al. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 31, 1900509 (2019).

    Article  CAS  Google Scholar 

  8. Feng, Q. et al. Mesoporous nitrogen-doped carbon-nanosphere-supported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene. Adv. Mater. 31, 1901024 (2019).

    Article  CAS  Google Scholar 

  9. Sárkány, A., Horváth, A. & Beck, A. Hydrogenation of acetylene over low loaded Pd and Pd-Au/SiO2 catalysts. Appl. Catal. A 229, 117–125 (2002).

    Article  Google Scholar 

  10. McGown, W. T., Kemball, C. & Whan, D. A. Hydrogenation of acetylene in excess ethylene on an alumina-supported palladium catalyst at atmospheric pressure in a spinning basket reactor. J. Catal. 51, 173–184 (1978).

    CAS  Article  Google Scholar 

  11. Yang, H. B. et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    CAS  Article  Google Scholar 

  12. Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

    CAS  Article  Google Scholar 

  13. Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).

    CAS  PubMed  Article  Google Scholar 

  14. Davitt, H. J. & Albright, L. F. Electrochemical hydrogenation of ethylene, acetylene, and ethylene-acetylene mixtures. J. Electrochem. Soc. 118, 236–242 (1971).

    CAS  Article  Google Scholar 

  15. Rubinson, J. F., Behymer, T. D. & Mark, H. B. Direct reduction of acetylene at molybdenum modified polymeric sulfur nitride, (SN)x, electrodes. J. Am. Chem. Soc. 104, 1224–1229 (1982).

    CAS  Article  Google Scholar 

  16. Gao, Y., Tsuji, H., Hattori, H. & Kita, H. New on-line mass spectrometer system designed for platinum-single crystal electrode and electroreduction of acetylene. J. Electroanal. Chem. 372, 195–200 (1994).

    CAS  Article  Google Scholar 

  17. Bełtowska-Brzezinska, M., Łuczak, T., Mączka, M., Baltruschat, H. & Müller, U. Ethyne oxidation and hydrogenation on porous Pt electrode in acidic solution. J. Electroanal. Chem. 519, 101–110 (2002).

    Article  Google Scholar 

  18. Otsuka, K. & Yagi, T. An electrochemical membrane reactor for selective hydrogenation of acetylene in abundant ethylene. J. Catal. 145, 289–294 (1994).

    CAS  Article  Google Scholar 

  19. Huang, B., Durante, C., Isse, A. A. & Gennaro, A. Highly selective electrochemical hydrogenation of acetylene to ethylene at Ag and Cu cathodes. Electrochem. Commun. 34, 90–93 (2013).

    Article  CAS  Google Scholar 

  20. Mark, H. B., Rubinson, J. F., Krotine, J., Vaughn, W. & Goldschmidt, M. Catalysis of the reduction of acetylene at poly-3-methylthiophene electrodes. Electrochim. Acta 45, 4309–4313 (2000).

    CAS  Article  Google Scholar 

  21. García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    PubMed  Article  CAS  Google Scholar 

  22. Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. & Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018).

    CAS  PubMed  Article  Google Scholar 

  23. Chen, C., Khosrowabadi Kotyk, J. F. & Sheehan, S. W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4, 2571–2586 (2018).

    CAS  Article  Google Scholar 

  24. Li, Z. et al. Co-based catalysts derived from layered-double-hydroxide nanosheets for the photothermal production of light olefins. Adv. Mater. 30, 1800527 (2018).

    Article  CAS  Google Scholar 

  25. Zhao, Y. et al. Reductive transformation of layered-double-hydroxide nanosheets to Fe-based heterostructures for efficient visible-light photocatalytic hydrogenation of CO. Adv. Mater. 30, 1803127 (2018).

    Article  CAS  Google Scholar 

  26. Yao, D. et al. Balancing effect between adsorption and diffusion on catalytic performance inside hollow nanostructured catalyst. ACS Catal. 9, 2969–2976 (2019).

    Article  CAS  Google Scholar 

  27. Zhang, R. et al. Insight into the effects of Cu component and the promoter on the selectivity and activity for efficient removal of acetylene from ethylene on Cu-based catalyst. J. Phys. Chem. C. 121, 27936–27949 (2017).

    CAS  Article  Google Scholar 

  28. Zhang, R., Zhang, J., Jiang, Z., Wang, B. & Fan, M. The cost-effective Cu-based catalysts for the efficient removal of acetylene from ethylene: the effects of Cu valence state, surface structure and surface alloying on the selectivity and activity. Chem. Eng. J. 351, 732–746 (2018).

    CAS  Article  Google Scholar 

  29. Liu, Y. et al. Layered double hydroxide-derived Ni-Cu nanoalloy catalysts for semi-hydrogenation of alkynes: improvement of selectivity and anti-coking ability via alloying of Ni and Cu. J. Catal. 359, 251–260 (2018).

    CAS  Article  Google Scholar 

  30. Platzman, I., Brener, R., Haick, H. & Tannenbaum, R. Oxidation of polycrystalline copper thin films at ambient conditions. J. Phys. Chem. C 112, 1101–1108 (2008).

    CAS  Article  Google Scholar 

  31. Xiao, F., Zhang, B. & Lee, C. Effects of low temperature on aluminum(III) hydrolysis: theoretical and experimental studies. J. Environ. Sci. 20, 907–914 (2008).

    CAS  Article  Google Scholar 

  32. Tian, G.-L. et al. Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation. J. Mater. Chem. A 2, 1686–1696 (2014).

    CAS  Article  Google Scholar 

  33. Zhou, Y. et al. Adsorption of acetylene on ordered NixAg1-x/Ni (111) and effect of Ag-dopant: a DFT study. Appl. Surf. Sci. 435, 521–528 (2018).

    CAS  Article  Google Scholar 

  34. Bligaard, T. & Nørskov, J. K. Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim. Acta 52, 5512–5516 (2007).

    CAS  Article  Google Scholar 

  35. Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

    CAS  PubMed  Article  Google Scholar 

  36. Gao, G., O’Mullane, A. P. & Du, A. 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 7, 494–500 (2016).

    Article  CAS  Google Scholar 

  37. Zhang, B., Zhou, J., Guo, Z., Peng, Q. & Sun, Z. Two-dimensional chromium boride MBenes with high HER catalytic activity. Appl. Surf. Sci. 500, 144248 (2020).

    CAS  Article  Google Scholar 

  38. Zheng, T. et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3, 265–278 (2019).

    CAS  Article  Google Scholar 

  39. Li, J. et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 1, 592–600 (2018).

    CAS  Article  Google Scholar 

  40. Leonard, M. E., Clarke, L. E., Forner-Cuenca, A., Brown, S. M. & Brushett, F. R. Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer. ChemSusChem 13, 400–411 (2020).

    CAS  PubMed  Article  Google Scholar 

  41. Hu, M. et al. MOF-confined sub-2 nm atomically ordered intermetallic PdZn nanoparticles as high-performance catalysts for selective hydrogenation of acetylene. Adv. Mater. 30, 1801878 (2018).

    Article  CAS  Google Scholar 

  42. Pei, G. X. et al. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 7, 1491–1500 (2017).

    CAS  Article  Google Scholar 

  43. Huang, F. et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat. Commun. 10, 4431 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. Coutanceau, C., Baranton, S. & Kouame, R. S. B. Selective electrooxidation of glycerol into value-added chemicals: a short overview. Front. Chem. 7, 100 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Wang, D. et al. Direct electrochemical oxidation of alcohols with hydrogen evolution in continuous-flow reactor. Nat. Commun. 10, 2796 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. Wagman, D. D. The NBS tables of chemical thermodynamic properties. J. Phys. Chem. Ref. Data 11 (Suppl. 2) 38, 83 (1982).

  47. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    CAS  PubMed  Article  Google Scholar 

  48. Zhang, X. et al. A simple synthetic strategy toward defect‐rich porous monolayer NiFe‐layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv. Energy Mater. 9, 1900881 (2019).

    Article  CAS  Google Scholar 

  49. Osswald, J. et al. Palladium–gallium intermetallic compounds for the selective hydrogenation of acetylene: part II: surface characterization and catalytic performance. J. Catal. 258, 219–227 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Key Projects for Fundamental Research and Development of China (2017YFA0206904, 2017YFA0206900, 2016YFB0600901 and 2018YFB1502002), the National Natural Science Foundation of China (51825205, U1662118, 51772305, 51572270, 21871279, 21802154 and 21902168), the Beijing Natural Science Foundation (2191002, 2194089 and 2182078), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17000000), the Beijing Municipal Science and Technology Project (Z181100005118007), a Royal Society Newton Advanced Fellowship (NA170422), the International Partnership Program of the Chinese Academy of Sciences (GJHZ1819 and GJHZ201974), the K. C. Wong Education Foundation and the Youth Innovation Promotion Association of the CAS. G.I.N.W. acknowledges funding support from the University of Auckland Faculty Research Development Fund, the Energy Education Trust of New Zealand, the MacDiarmid Institute for Advanced Materials and Nanotechnology and a philanthropic donation from G. and K. Trounson. The EXAFS experiments were conducted at the 1W1B beamline of Beijing Synchrotron Radiation Facility (BSRF).

Author information

Authors and Affiliations

Authors

Contributions

R.S. and T.Z. conceived the idea for the project. R.S. designed electrochemical cell. Z.W. and Z.L. performed the structural characterization. R.S. and Z.W. conducted the measurements. Y.Z., B.Z. and Z.S. performed the computer simulation. R.S., G.I.N.W. and T.Z. wrote the manuscript and C.X. and H.W. provided suggestions. T.Z. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Haotian Wang or Tierui Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–27, Tables 1–6 and references.

Supplementary Data 1

Atomic coordinates of the computational models.

Supplementary Data 2

Atomic coordinates of the computational models.

Supplementary Data 3

Atomic coordinates of the computational models.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Wang, Z., Zhao, Y. et al. Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nat Catal 4, 565–574 (2021). https://doi.org/10.1038/s41929-021-00640-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00640-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing