Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A semiconducting polymer bulk heterojunction photoanode for solar water oxidation

Abstract

Organic semiconductors hold promise to enable scalable, low-cost and high-performance artificial photosynthesis. However, the performance of systems based on organic semiconductors for light-driven water oxidation have remained poor compared with inorganic semiconductors. Herein, we demonstrate an all-polymer bulk heterojunction organic semiconductor photoanode for solar water oxidation. By engineering the photoanode interlayers we gain important insights into critical factors (surface roughness and charge extraction efficiency) to increase the operational stability, which reaches above 3 h with a 1-Sun photocurrent density, Jph, of >3 mA cm−2 at 1.23 V versus the reversible hydrogen electrode for the sacrificial oxidation of Na2SO3 at pH 9. Optimizing the coupling to an oxygen evolution catalyst yields O2 production with Jph > 2 mA cm−2 at 1.23 V versus the reversible hydrogen electrode (100% Faradaic efficiency and a quantum efficiency up to 27% with 610 nm illumination), demonstrating improved stability (≥1 mA cm−2 for over 30 min of continuous operation) compared with previous organic photoanodes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Components and device structure of the BHJ photoanode.
Fig. 2: ETL engineering of the BHJ photoanodes for stable sacrificial oxidation.
Fig. 3: Photoanode structure with HTL and OER catalyst for solar water oxidation.
Fig. 4: Quantum efficiency and O2 production.

Data Availability

Source data are provided with this paper. All data generated or analysed during this study are included in this published article and its Supplementary Information files, or are available from the authors upon reasonable request.

References

  1. 1.

    Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    PubMed  Google Scholar 

  2. 2.

    Kim, J. H., Hansora, D., Sharma, P., Jang, J.-W. & Lee, J. S. Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019).

    CAS  PubMed  Google Scholar 

  3. 3.

    Ardo, S. et al. Pathways to electrochemical solar-hydrogen technologies. Energy Environ. Sci. 11, 2768–2783 (2018).

    CAS  Google Scholar 

  4. 4.

    Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 6, 511–518 (2012).

    CAS  Google Scholar 

  5. 5.

    Sivula, K. & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    CAS  Google Scholar 

  6. 6.

    Hisatomi, T. & Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019).

    CAS  Google Scholar 

  7. 7.

    Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    CAS  Google Scholar 

  8. 8.

    Yang, Y. et al. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy Mater. 7, 1700555 (2017).

    Google Scholar 

  9. 9.

    Chandrasekaran, S. et al. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem. Soc. Rev. 48, 4178–4280 (2019).

    CAS  PubMed  Google Scholar 

  10. 10.

    Luo, Z., Wang, T. & Gong, J. Single-crystal silicon-based electrodes for unbiased solar water splitting: current status and prospects. Chem. Soc. Rev. 48, 2158–2181 (2019).

    CAS  PubMed  Google Scholar 

  11. 11.

    Zheng, J. et al. Efficiency and stability of narrow-gap semiconductor-based photoelectrodes. Energy Environ. Sci. 12, 2345–2374 (2019).

    Google Scholar 

  12. 12.

    Jiang, C., Moniz, S. J. A., Wang, A., Zhang, T. & Tang, J. Photoelectrochemical devices for solar water splitting – materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017).

    CAS  PubMed  Google Scholar 

  13. 13.

    Serpone, N. et al. Why do hydrogen and oxygen yields from semiconductor-based photocatalyzed water splitting remain disappointingly low? Intrinsic and extrinsic factors impacting surface redox reactions. ACS Energy Lett. 1, 931–948 (2016).

    CAS  Google Scholar 

  14. 14.

    Wang, Y. et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 4, 746–760 (2019).

    CAS  Google Scholar 

  15. 15.

    Yao, L., Rahmanudin, A., Guijarro, N. & Sivula, K. Organic semiconductor based devices for solar water splitting. Adv. Energy Mater. 8, 1802585 (2018).

    Google Scholar 

  16. 16.

    Steier, L. & Holliday, S. A bright outlook on organic photoelectrochemical cells for water splitting. J. Mater. Chem. A 6, 21809–21826 (2018).

    CAS  Google Scholar 

  17. 17.

    Bellani, S., Antognazza, M. R. & Bonaccorso, F. Carbon-based photocathode materials for solar hydrogen production. Adv. Mater. 31, 1801446 (2019).

    Google Scholar 

  18. 18.

    Zhang, G., Lan, Z.-A. & Wang, X. Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55, 15712–15727 (2016).

    Google Scholar 

  19. 19.

    Bronstein, H., Nielsen, C. B., Schroeder, B. C. & McCulloch, I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 4, 66–77 (2020).

    CAS  Google Scholar 

  20. 20.

    Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    CAS  Google Scholar 

  21. 21.

    Yao, L. et al. Establishing stability in organic semiconductor photocathodes for solar hydrogen production. J. Am. Chem. Soc. 142, 7795–7802 (2020).

    CAS  PubMed  Google Scholar 

  22. 22.

    Kosco, J. et al. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat. Mater. 19, 559–565 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Espinosa, N., Hösel, M., Angmo, D. & Krebs, F. C. Solar cells with one-day energy payback for the factories of the future. Energy Environ. Sci. 5, 5117–5132 (2012).

    CAS  Google Scholar 

  24. 24.

    Zhang, K., Ma, M., Li, P., Wang, D. H. & Park, J. H. Water splitting progress in tandem devices: moving photolysis beyond Electrolysis. Adv. Energy Mater. 6, 1600602 (2016).

    Google Scholar 

  25. 25.

    Ng, B. et al. Z‐ccheme photocatalytic systems for solar water splitting. Adv. Sci. 7, 1903171 (2020).

    CAS  Google Scholar 

  26. 26.

    Kirner, J. T. & Finke, R. G. Water-oxidation photoanodes using organic light-harvesting materials: a review. J. Mater. Chem. A 5, 19560–19592 (2017).

    CAS  Google Scholar 

  27. 27.

    Bornoz, P., Prévot, M. S., Yu, X., Guijarro, N. & Sivula, K. Direct light-driven water oxidation by a ladder-type conjugated polymer photoanode. J. Am. Chem. Soc. 137, 15338–15341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Mansha, M., Khan, I., Ullah, N., Qurashi, A. & Sohail, M. Visible-light driven photocatalytic oxygen evolution reaction from new poly(phenylene cyanovinylenes). Dyes Pigm. 143, 95–102 (2017).

    CAS  Google Scholar 

  29. 29.

    Abe, T. et al. An organic photoelectrode working in the water phase: visible-light-induced dioxygen evolution by a perylene derivative/cobalt phthalocyanine bilayer. Angew. Chem. Int. Ed. 45, 2778–2781 (2006).

    CAS  Google Scholar 

  30. 30.

    Kirner, J. T., Stracke, J. J., Gregg, B. A. & Finke, R. G. Visible-light-assisted photoelectrochemical water oxidation by thin films of a phosphonate-functionalized perylene diimide plus CoOx cocatalyst. ACS Appl. Mater. Interfaces 6, 13367–13377 (2014).

    CAS  PubMed  Google Scholar 

  31. 31.

    Wang, L. et al. Improved stability and performance of visible photoelectrochemical water splitting on solution-processed organic semiconductor thin films by ultrathin metal oxide passivation. Chem. Mater. 30, 324–335 (2018).

    CAS  Google Scholar 

  32. 32.

    Eom, Y. K. et al. Visible-light-driven photocatalytic water oxidation by a π-conjugated donor–acceptor–donor chromophore/catalyst assembly. ACS Energy Lett. 3, 2114–2119 (2018).

    CAS  Google Scholar 

  33. 33.

    Kirner, J. T. & Finke, R. G. Sensitization of nanocrystalline metal oxides with a phosphonate-functionalized perylene diimide for photoelectrochemical water oxidation with a CoOx catalyst. ACS Appl. Mater. Interfaces 9, 27625–27637 (2017).

    CAS  PubMed  Google Scholar 

  34. 34.

    Wee, K.-R. et al. An aqueous, organic dye derivatized SnO2/TiO2 core/shell photoanode. J. Mater. Chem. A 4, 2969–2975 (2016).

    CAS  Google Scholar 

  35. 35.

    Park, S.-Y. et al. Stable organic-inorganic hybrid multilayered photoelectrochemical cells. J. Power Sources 341, 411–418 (2017).

    CAS  Google Scholar 

  36. 36.

    Liu, G., Chen, C., Ji, H., Ma, W. & Zhao, J. Photo-electrochemical water splitting system with three-layer n-type organic semiconductor film as photoanode under visible irradiation. Sci. China Chem. 55, 1953–1958 (2012).

    CAS  Google Scholar 

  37. 37.

    Distler, A. et al. The effect of PCBM dimerization on the performance of bulk heterojunction solar cells. Adv. Energy Mater. 4, 1300693 (2014).

    Google Scholar 

  38. 38.

    Cheng, P., Li, G., Zhan, X. & Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 12, 131–142 (2018).

    CAS  Google Scholar 

  39. 39.

    Kang, T. E. et al. Importance of optimal composition in random terpolymer-based polymer solar cells. Macromolecules 46, 6806–6813 (2013).

    CAS  Google Scholar 

  40. 40.

    Kim, T. et al. Flexible, highly efficient all-polymer solar cells. Nat. Commun. 6, 8547 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Cho, H.-H. et al. Design of cyanovinylene-containing polymer acceptors with large dipole moment change for efficient charge generation in high-performance all-polymer solar cells. Adv. Energy Mater. 8, 1701436 (2018).

    Google Scholar 

  42. 42.

    Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    CAS  PubMed  Google Scholar 

  43. 43.

    Fekete, M., Riedel, W., Patti, A. F. & Spiccia, L. Photoelectrochemical water oxidation by screen printed ZnO nanoparticle films: effect of pH on catalytic activity and stability. Nanoscale 6, 7585–7593 (2014).

    CAS  PubMed  Google Scholar 

  44. 44.

    Cai, C. & Dauskardt, R. H. Nanoscale interfacial engineering for flexible barrier films. Nano Lett. 15, 6751–6755 (2015).

    CAS  PubMed  Google Scholar 

  45. 45.

    Huang, Q. et al. Recombination in SnO2-based quantum dots sensitized solar cells: the role of surface states. J. Phys. Chem. C. 117, 10965–10973 (2013).

    CAS  Google Scholar 

  46. 46.

    Wang, D. et al. Self-assembled chromophore–catalyst bilayer for water oxidation in a dye-sensitized photoelectrosynthesis cell. J. Phys. Chem. C. 123, 30039–30045 (2019).

    CAS  Google Scholar 

  47. 47.

    Li, S.-S. & Chen, C.-W. Polymer–metal-oxide hybrid solar cells. J. Mater. Chem. A 1, 10574–10591 (2013).

    CAS  Google Scholar 

  48. 48.

    Gao, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 141, 3014–3023 (2019).

    CAS  PubMed  Google Scholar 

  49. 49.

    Dincă, M., Surendranath, Y. & Nocera, D. G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl Acad. Sci. USA 107, 10337–10341 (2010).

    PubMed  Google Scholar 

  50. 50.

    Abdou, M. S. A. & Holdcroft, S. Mechanisms of photodegradation of poly(3-alkylthiophenes) in solution. Macromolecules 26, 2954–2962 (1993).

    CAS  Google Scholar 

  51. 51.

    Lee, J. U., Jung, J. W., Jo, J. W. & Jo, W. H. Degradation and stability of polymer-based solar cells. J. Mater. Chem. 22, 24265–24283 (2012).

    CAS  Google Scholar 

  52. 52.

    Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486–491 (2013).

    CAS  Google Scholar 

  53. 53.

    Noh, J., Jeong, S. & Lee, J.-Y. Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate. Nat. Commun. 7, 12374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Yun, H.-J. et al. Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution. Adv. Mater. 26, 7300–7307 (2014).

    CAS  PubMed  Google Scholar 

  55. 55.

    Jeanbourquin, X. A. et al. Amorphous ternary charge-cascade molecules for bulk heterojunction photovoltaics. ACS Appl. Mater. Interfaces 9, 27825–27831 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Cho, H.-H. et al. Synthesis and side-chain engineering of phenylnaphthalenediimide (PNDI)-based n-type polymers for efficient all-polymer solar cells. J. Mater. Chem. A 5, 5449–5459 (2017).

    CAS  Google Scholar 

  57. 57.

    Ke, W. et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730–6733 (2015).

    CAS  PubMed  Google Scholar 

  58. 58.

    Yan, K. et al. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137, 4460–4468 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Swiss Competence Centre for Energy Research (SCCER Heat and Electricity Storage, contract number CTI 1155002545). N.G. and Y.L. thank the Swiss National Foundation (SNF) for funding under an Ambizione Energy Grant (PZENP2_166871). J.-H.Y. thanks a research agreement between EPFL and the Korea Electric Power Corporation (KEPCO).

Author information

Affiliations

Authors

Contributions

K.S. and H.-H.C. conceived and designed the project. H.-H.C. prepared the photoanodes and measured the PEC performance. H.-H.C. and L.Y. performed the IPCE and GC measurements. H.-H.C. and J.-H.Y. prepared the ETLs and HTLs and performed the contact angle measurements. H.-H.C., Y.L. and R.A.W. performed the SEM and TEM measurements. Y.L. and F.B. analysed the impedance data. H.-H.C. and N.G. characterized the OER catalysts. H.-H.C. and A.S. synthesized the polymer donor and acceptor. K.S. and H.-H.C. prepared the manuscript and subsequent editing/improvement was performed by all authors.

Corresponding author

Correspondence to Kevin Sivula.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Ludmilla Steier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussions, Figs. 1–30, Tables 1 and 2 and References.

Supplementary Data 1

Source data for the chronoamperometric plots in Supplementary Figs. 3b, 4, 6b, 11b, 12d, 13b, 15b, 20b, 28b, 29b and 30b.

Source data

Source Data Fig. 2

Source data for the chronoamperometric plot.

Source Data Fig. 3

Source data for the chronoamperometric plot.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cho, HH., Yao, L., Yum, JH. et al. A semiconducting polymer bulk heterojunction photoanode for solar water oxidation. Nat Catal 4, 431–438 (2021). https://doi.org/10.1038/s41929-021-00617-x

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing