Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Catalyst control over sixfold stereogenicity

A Publisher Correction to this article was published on 03 June 2021

This article has been updated


Achieving control over higher-order stereogenicity is a long-standing goal in stereoselective catalysis to deliberately address more than a twofold number of stereoisomers per stereogenic unit. Current methods allow control over 2n stereoisomers and their configurations are routinely assigned using the descriptors (R) and (S) or related binary codes. In contrast, conformational analysis extends beyond this dualistic treatment of stereoisomerism, which constitutes an unmet challenge for catalyst stereocontrol. Here, we report that sixfold stereogenicity is tractable by stereoselective catalysis. By controlling a configurationally stable stereogenic axis with six large rotational barriers, a catalytic [2 + 2 + 2] cyclotrimerization selectively governs the formation of one of six stereoisomers with up to 0:0:2:98:0:0 stereocontrol. Moreover, the stereoselectivity is redirectable by stereodivergent catalysis, providing four of the six stereoisomers as major stereoisomers. The underpinnings of conformational analysis and stereoselective catalysis are thereby conceptually reunited. Novel molecular architectures featuring distinct chemical topologies and unexplored chemical designs are anticipated from catalyst control over higher-order stereogenicity.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Stereogenicity and conformational analysis.
Fig. 2: Sixfold stereogenicity of a transitionally stereodynamic system.
Fig. 3: Development of the catalytic [2 + 2 + 2] cycloaddition governing sixfold stereogenicity.
Fig. 4: Catalyst control over sixfold stereogenicity.
Fig. 5: Stereodivergent catalyst control.

Data availability

Experimental details, supplementary methods, NMR spectra and crystallographic data are available in the main text and the Supplementary Information. Other data are available from the authors upon reasonable request. Supplementary crystallographic data for the quasi-racemate between (+ap)-2c/(−ap)-2d and (±)-3b can also be obtained from the Cambridge Crystallographic Data Center at (CCDC 2004118 and 1999568).

Change history


  1. Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis, vols. I–III (Springer, 1999).

  2. Miyashita, A. et al. Synthesis of 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP), an atropisomeric chiral bis(triaryl)phosphine, and its use in the rhodium(i)-catalyzed asymmetric hydrogenation of α-(acylamino)acrylic acids. J. Am. Chem. Soc. 102, 7932–7934 (1980).

    CAS  Article  Google Scholar 

  3. Bringmann, G. et al. Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005).

    CAS  Article  Google Scholar 

  4. Clayden, J., Moran, W. J., Edwards, P. J. & LaPlante, S. R. The challenge of atropisomerism in drug discovery. Angew. Chem. Int. Ed. 48, 6398–6401 (2009).

    CAS  Article  Google Scholar 

  5. Gustafson, J. L., Lim, D. & Miller, S. J. Dynamic kinetic resolution of biaryl atropisomers via peptide-catalyzed asymmetric bromination. Science 328, 1251–1255 (2010).

    CAS  Article  Google Scholar 

  6. Wencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls. Chem. Soc. Rev. 44, 3418–3430 (2015).

    CAS  Article  Google Scholar 

  7. Canfield, P. J. et al. A new fundamental type of conformational isomerism. Nat. Chem. 10, 615–624 (2018).

    CAS  Article  Google Scholar 

  8. Clayden, J. Non-biaryl atropisomers: new classes of chiral reagents, auxiliaries, and ligands? Angew. Chem. Int. Ed. 36, 949–951 (1997).

    CAS  Article  Google Scholar 

  9. Bonne, D., Bao, X. & Rodriguez, J. Enantioselective synthesis of atropisomers with multiple stereogenic axes. Angew. Chem. Int. Ed. 59, 12623–12634 (2020).

    Article  Google Scholar 

  10. Finocchiaro, P., Gust, D. & Mislow, K. Separation of conformational stereoisomers in a triarylmethane. J. Am. Chem. Soc. 95, 8172–8173 (1973).

    CAS  Article  Google Scholar 

  11. Mislow, K. & Siegel, J. Stereoisomerism and local chirality. J. Am. Chem. Soc. 106, 3319–3328 (1984).

    CAS  Article  Google Scholar 

  12. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds (Wiley, 1994).

  13. Nicolaou, K. C., Boddy, C. N. C. & Siegel, J. Does CIP nomenclature adequately handle molecules with multiple stereoelements? A case study of vancomycin and cognates. Angew. Chem. Int. Ed. 40, 701–704 (2001).

    CAS  Article  Google Scholar 

  14. Walsh, P. J. & Kozlowski, M. C. Fundamentals of Asymmetric Catalysis (University Science Books, 2009).

  15. Ototake, N., Nakamura, M., Dobashi, Y., Fukaya, H. & Kitagawa, O. Highly selective stereodivergent synthesis of separable amide rotamers, by using Pd chemistry, and their thermodynamic behavior. Chem. Eur. J. 15, 5090–5095 (2009).

    CAS  Article  Google Scholar 

  16. Nakamura, S., Yasuda, H. & Toru, T. Diastereoselective reaction of [1-(2,4,6- triisopropylphenylsulfinyl)-2-naphthyl]methanimines via diastereomeric rotamers. Tetrahedron Asymmetry 13, 1509–1518 (2002).

    CAS  Article  Google Scholar 

  17. Lassaletta, J. M., ed. Atropisomerism and Axial Chirality (World Scientific Publishing, 2019).

  18. Wolf, C. Dynamic Stereochemistry of Chiral Compounds (Royal Society of Chemistry, 2008).

  19. Quack, M. How important is parity violation for molecular and biomolecular chirality? Angew. Chem. Int. Ed. 41, 4618 (2002).

    CAS  Article  Google Scholar 

  20. Chang, Y.-P. et al. Specific chemical reactivities of spatially separated 3-aminophenol conformers with cold Ca+ ions. Science 342, 98–101 (2013).

    CAS  Article  Google Scholar 

  21. Isaka, M., Tanticharoen, M., Kongsaeree, P. & Thebtaranonth, Y. Structures of cordypyridones A−D, antimalarial N-hydroxy- and N-methoxy-2-pyridones from the insect pathogenic fungus Cordyceps nipponica. J. Org. Chem. 66, 4803–4808 (2001).

    CAS  Article  Google Scholar 

  22. Jones, I. L., Moore, F. K. & Chai, C. L. L. Total synthesis of (±)-cordypyridones A and B and related epimers. Org. Lett. 11, 5526–5529 (2009).

    CAS  Article  Google Scholar 

  23. Nakamura, M. & Ōki, M. Restricted rotation involving the tetrahedral carbon. XV. Restricted rotation about a \({\mathrm{C}}_{{\mathrm{sp}}^3}{\hbox{--}}{\mathrm{C}}_{{\mathrm{sp}}^2}\) bond in 9-aryltriptycene derivatives. Bull. Chem. Soc. Jpn. 48, 2106–2111 (1975).

    CAS  Article  Google Scholar 

  24. Yamamoto, G., Nakamura, M. & Ōki, M. Restricted rotation involving the tetrahedral carbon. XVI. Isolation of stable rotamers about a sp3–sp3 carbon bond. Bull. Chem. Soc. Jpn. 48, 2592–2596 (1975).

    CAS  Article  Google Scholar 

  25. Ford, W. T., Thompson, T. B., Snoble, K. A. J. & Timko, J. M. Hindered rotation in 9-arylfluorenes. Resolutions of the mechanistic question. J. Am. Chem. Soc. 97, 95–101 (1975).

    CAS  Article  Google Scholar 

  26. Yamamoto, G., Suzuki, M. & Ōki, M. Restricted rotation involving the tetrahedral carbon. XLV. Appearance of a maximum in the rotational barriers of 9-(1,1-dimethyl-2-phenylethyl)triptycenes at a medium-sized peri-substituent. Bull. Chem. Soc. Jpn. 56, 306–313 (1983).

    CAS  Article  Google Scholar 

  27. Ōki, M. The Chemistry of Rotational Isomers (Springer, 1993).

  28. Di Iorio, N., Filippini, G., Mazzanti, A., Righi, P. & Bencivenni, G. Controlling the C(sp3)–C(sp2) axial conformation in the enantioselective Friedel–Crafts type alkylation of β-naphthols with inden-1-ones. Org. Lett. 19, 6692–6695 (2017).

    Article  Google Scholar 

  29. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotech. 1, 25–35 (2006).

    CAS  Article  Google Scholar 

  30. Kelly, T. R. et al. Progress toward a rationally designed, chemically powered rotary molecular motor. J. Am. Chem. Soc. 129, 376–386 (2007).

    CAS  Article  Google Scholar 

  31. Werner, A. Über eine neue Isomerieart bei Kobaltverbindungen und Verbindungen mit asymmetrischem Kobalt und Kohlenstoff. Helv. Chim. Acta 1, 5–32 (1918).

    CAS  Article  Google Scholar 

  32. Shibata, T., Fujimoto, T., Yokota, K. & Takagi, K. Iridium complex-catalyzed highly enantio- and diastereoselective [2+2+2] cycloaddition for the synthesis of axially chiral teraryl compounds. J. Am. Chem. Soc. 126, 8382–8383 (2004).

    CAS  Article  Google Scholar 

  33. Gutnov, A. et al. Cobalt(i)‐catalyzed asymmetric [2+2+2] cycloaddition of alkynes and nitriles: synthesis of enantiomerically enriched atropoisomers of 2‐arylpyridines. Angew. Chem. Int. Ed. 43, 3795–3797 (2004).

    CAS  Article  Google Scholar 

  34. Tanaka, K., Nishida, G., Wada, A. & Noguchi, K. Enantioselective synthesis of axially chiral phthalides through cationic [Rhi(H8‐binap)]‐catalyzed cross alkyne cyclotrimerization. Angew. Chem. Int. Ed. 43, 6510–6513 (2004).

    CAS  Article  Google Scholar 

  35. Tanaka, K. Transition‐metal‐catalyzed enantioselective [2+2+2] cycloadditions for the synthesis of axially chiral biaryls. Chem. Asian, J. 4, 508–518 (2009).

    CAS  Article  Google Scholar 

  36. Link, A. & Sparr, C. Stereoselective arene formation. Chem. Soc. Rev. 47, 3804–3815 (2018).

    CAS  Article  Google Scholar 

  37. Klyne, W. & Prelog, V. Description of steric relationships across single bonds. Experientia 16, 521–568 (1960).

    CAS  Article  Google Scholar 

  38. Cahn, R. S., Ingold, C. & Prelog, V. Specification of molecular chirality. Angew. Chem. Int. Ed. 5, 385–415 (1966).

    CAS  Article  Google Scholar 

  39. Xie, J.-H. et al. Synthesis of spiro diphosphines and their application in asymmetric hydrogenation of ketones. J. Am. Chem. Soc. 125, 4404–4405 (2003).

    CAS  Article  Google Scholar 

  40. Zimmerman, H. E., Sulzbach, H. M. & Tollefson, M. B. Experimental and theoretical exploration of the detailed mechanism of the rearrangement of barrelenes to semibullvalenes: diradical intermediates and transition states. J. Am. Chem. Soc. 115, 6548–6556 (1993).

    CAS  Article  Google Scholar 

Download references


Financial support for this work was provided by the Swiss National Science Foundation (SNSF), award number BSSGI0-155902/1 (C.S.), the University of Basel and the NCCR Molecular Systems Engineering Phase II of the SNSF, award number 182895 (C.S.). We thank A. Prescimone for X-ray crystallography.

Author information

Authors and Affiliations



C.S., R.M.W., X.W., C.F. and R.B. conceived the study, designed the experiments and analysed the data. R.M.W, X.W., C.F. and R.B. performed the experiments and D. H. carried out the NMR studies. C.S. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Christof Sparr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Jean Rodriguez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–19, Tables 1–10 and references.

Supplementary Data 1

This file contains the crystal data for the quasi-racemate of (+ap)-2c and (−ap)-2d (CCDC 2004118).

Supplementary Data 2

This file contains the rtf data for the quasi-racemate of (+ap)-2c and (−ap)-2d (CCDC 2004118).

Supplementary Data 3

This file contains the crystal data for (±)-3b (CCDC 1999568).

Supplementary Data 4

This file contains the rtf data for (±)-3b (CCDC 1999568).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Witzig, R.M., Beaud, R. et al. Catalyst control over sixfold stereogenicity. Nat Catal 4, 457–462 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing