Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide

An Author Correction to this article was published on 02 June 2021

This article has been updated

Abstract

Artificial photosynthesis offers a promising strategy to produce hydrogen peroxide (H2O2)—an environmentally friendly oxidant and a clean fuel. However, the low activity and selectivity of the two-electron oxygen reduction reaction (ORR) in the photocatalytic process greatly restricts the H2O2 production efficiency. Here we show a robust antimony single-atom photocatalyst (Sb-SAPC, single Sb atoms dispersed on carbon nitride) for the synthesis of H2O2 in a simple water and oxygen mixture under visible light irradiation. An apparent quantum yield of 17.6% at 420 nm together with a solar-to-chemical conversion efficiency of 0.61% for H2O2 synthesis was achieved. On the basis of time-dependent density function theory calculations, isotopic experiments and advanced spectroscopic characterizations, the photocatalytic performance is ascribed to the notably promoted two-electron ORR by forming μ-peroxide at the Sb sites and highly concentrated holes at the neighbouring N atoms. The in situ generated O2 via water oxidation is rapidly consumed by ORR, leading to boosted overall reaction kinetics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Photocatalytic performance of Sb-SAPC towards H2O2 production.
Fig. 2: Characterization of Sb-SAPC.
Fig. 3: Excitation properties and OER/ORR reactivities of Sb-SAPC15.
Fig. 4: Mechanism of photocatalytic H2O2 production.

Data availability

Source data are provided with this paper. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

References

  1. 1.

    Bryliakov, K. P. Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2. Chem. Rev. 117, 11406–11459 (2017).

    CAS  PubMed  Google Scholar 

  2. 2.

    Shaegh, S. A. M., Nguyen, N.-T., Ehteshamiab, S. M. M. & Chan, S. H. A membraneless hydrogen peroxide fuel cell using Prussian Blue as cathode material. Energy Environ. Sci. 5, 8225–8228 (2012).

    Google Scholar 

  3. 3.

    Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009).

    CAS  PubMed  Google Scholar 

  4. 4.

    Kim, D., Sakimoto, K. K., Hong, D. & Yang, P. Artificial photosynthesis for sustainable fuel and chemical production. Angew. Chem. Int. Ed. 54, 3259–3266 (2015).

    CAS  Google Scholar 

  5. 5.

    Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    CAS  PubMed  Google Scholar 

  6. 6.

    Edwards, J. K. et al. Direct synthesis of H2O2 from H2 and O2 over gold, palladium, and gold-palladium catalysts supported on acid-pretreated TiO2. Angew. Chem. Int. Ed. 48, 8512–8515 (2009).

    CAS  Google Scholar 

  7. 7.

    Freakley, S. J. et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351, 965–968 (2016).

    CAS  PubMed  Google Scholar 

  8. 8.

    Yang, S. et al. Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064–4081 (2018).

    CAS  Google Scholar 

  9. 9.

    Yi, Y., Wang, L., Li, G. & Guo, H. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method. Catal. Sci. Technol. 6, 1593–1610 (2016).

    CAS  Google Scholar 

  10. 10.

    Hou, H., Zeng, X. & Zhang, X. Production of hydrogen peroxide through photocatalytic process. Angew. Chem. Int. Ed. 59, 17356–17376 (2020).

    CAS  Google Scholar 

  11. 11.

    Shi, X. et al. Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nat. Commun. 8, 701 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Shiraishi, Y. et al. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem. 126, 13672–13677 (2014).

    Google Scholar 

  13. 13.

    Fuku, K. & Sayama, K. Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode. Chem. Commun. 52, 5406–5409 (2016).

    CAS  Google Scholar 

  14. 14.

    Baek, J. H. et al. Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2. ACS Energy Lett. 4, 720–728 (2019).

    CAS  Google Scholar 

  15. 15.

    Teng, Z. et al. Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: pragmatic guidelines for predicting charge separation. Appl. Catal. B Environ. 282, 119589 (2020).

    Google Scholar 

  16. 16.

    Shiraishi, Y. et al. Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 18, 985–993 (2019).

    CAS  PubMed  Google Scholar 

  17. 17.

    Fan, W. et al. Efficient hydrogen peroxide synthesis by metal-free polyterthiophene via photoelectrocatalytic dioxygen reduction. Energy Environ. Sci. 13, 238–245 (2020).

    CAS  Google Scholar 

  18. 18.

    Kim, H., Choi, Y., Hu, S., Choi, W. & Kim, J.-H. Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride. Appl. Catal. B Environ. 229, 121–129 (2018).

    CAS  Google Scholar 

  19. 19.

    Moon, G.-H. et al. Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements. ACS Catal. 7, 2886–2895 (2017).

    CAS  Google Scholar 

  20. 20.

    Chu, C. et al. Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production. Proc. Natl Acad. Sci. USA 117, 6376–6382 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Wei, Z. et al. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymer. Energy Environ. Sci. 11, 2581–2589 (2018).

    CAS  Google Scholar 

  22. 22.

    Kaynan, N., Berke, B. A., Hazut, O. & Yerushalmi, R. Sustainable photocatalytic production of hydrogen peroxide from water and molecular oxygen. J. Mater. Chem. A 2, 13822–13826 (2014).

    CAS  Google Scholar 

  23. 23.

    Teng, Z. et al. Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-s-triazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H2O2 production. Appl. Catal. B. 271, 118917 (2020).

    CAS  Google Scholar 

  24. 24.

    Zeng, X. et al. Simultaneously tuning charge separation and oxygen reduction pathway on graphitic carbon nitride by polyethylenimine for boosted photocatalytic hydrogen peroxide production. ACS Catal. 10, 3697–3706 (2020).

    CAS  Google Scholar 

  25. 25.

    Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).

    CAS  PubMed  Google Scholar 

  26. 26.

    Hirakawa, H., Hashimoto, M., Shiraishi, Y. & Hirai, T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J. Am. Chem. Soc. 139, 10929–10936 (2017).

    CAS  PubMed  Google Scholar 

  27. 27.

    Kulkarni, A., Siahrostami, S., Patel, A. & Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018).

    CAS  PubMed  Google Scholar 

  28. 28.

    Watanabe, E., Ushiyama, H. & Yamashita, K. Theoretical studies on the mechanism of oxygen reduction reaction on clean and O-substituted Ta3N5(100) surfaces. Catal. Sci. Technol. 5, 2769–2776 (2015).

    CAS  Google Scholar 

  29. 29.

    Choi, C. H. et al. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 118, 30063–30070 (2014).

    CAS  Google Scholar 

  30. 30.

    Chu, C. et al. Electronic tuning of metal nanoparticles for highly efficient photocatalytic hydrogen peroxide production. ACS Catal. 9, 626–631 (2019).

    CAS  Google Scholar 

  31. 31.

    Pegis, M. L., Wise, C. F., Martin, D. J. & Mayer, J. M. Oxygen reduction by homogeneous molecular catalysts and electrocatalysts. Chem. Rev. 118, 2340–2391 (2018).

    CAS  PubMed  Google Scholar 

  32. 32.

    Yang, S., Kim, J., Tak, Y. J., Soon, A. & Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 55, 2058–2062 (2016).

    CAS  Google Scholar 

  33. 33.

    Montemore, M. M., van Spronsen, M. A., Madix, R. J. & Friend, C. M. O2 activation by metal surfaces: implications for bonding and reactivity on heterogeneous catalysts. Chem. Rev. 118, 2816–2862 (2018).

    CAS  PubMed  Google Scholar 

  34. 34.

    Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    CAS  Google Scholar 

  35. 35.

    Shen, R. et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 5, 2099–2110 (2019).

    CAS  Google Scholar 

  36. 36.

    Gao, J. et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 6, 1–17 (2020).

    Google Scholar 

  37. 37.

    Jung, E. et al. Atomic-level tuning of Co-C-N catalyst for high performance electrochemical H2O2 production. Nat. Mater. 19, 436–442 (2020).

    CAS  PubMed  Google Scholar 

  38. 38.

    Nosaka, Y. & Nosaka, A. Introduction to Photocatalysis: From Basic Science to Applications (Royal Society of Chemistry, 2016).

  39. 39.

    Inoue, Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2, 364–386 (2009).

    CAS  Google Scholar 

  40. 40.

    Li, X. et al. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 28, 2427–2431 (2016).

    CAS  PubMed  Google Scholar 

  41. 41.

    Naumkin, A. V., Kraut-Vass, A., Gaarenstroom, S. W. & Powell, C. J. NIST X-Ray Photoelectron Spectroscopy Database figshare (NIST, 2012); https://doi.org/10.18434/T4T88K

  42. 42.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS  Google Scholar 

  43. 43.

    Zhang, P. et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride. Angew. Chem. Int. Ed. 59, 16209–16217 (2020).

    CAS  Google Scholar 

  44. 44.

    Kim, S. et al. Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light. J. Catal. 357, 51–58 (2018).

    Google Scholar 

  45. 45.

    Yamakata, A., Ishibashi, T. & Onishi, H. Water- and oxygen-induced decay kinetics of photogenerated electrons in TiO2 and Pt/TiO2: a time-resolved infrared absorption study. J. Phys. Chem. B 105, 7258–7262 (2001).

    CAS  Google Scholar 

  46. 46.

    Zhang, P. et al. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 10, 940 (2019).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Sanville, E., Kenny, S. D., Smith, R. & Henkelman, G. Improved grid based algorithm for Bader charge allocation. J. Comput. Chem. 28, 899–908 (2001).

    Google Scholar 

  48. 48.

    Gao, H., Yan, S., Wang, J. & Zou, Z. Ion coordination significantly enhances the photocatalytic activity of graphitic-phase carbon nitride. Dalton Trans. 43, 8178–8183 (2014).

    CAS  PubMed  Google Scholar 

  49. 49.

    Xiong, T. et al. KCl-mediated dual electronic channels in layered g-C3N4 for enhanced visible light photocatalytic NO removal. Nanoscale 10, 8066–8074 (2018).

    CAS  PubMed  Google Scholar 

  50. 50.

    Xiong, T., Cen, W., Zhang, Y. & Dong, F. Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 6, 2462–2472 (2016).

    CAS  Google Scholar 

  51. 51.

    Ghuman, K. K. et al. Photoexcited surface frustrated Lewis pairs for heterogeneous photocatalytic CO2 reduction. J. Am. Chem. Soc. 138, 1206–1214 (2016).

    CAS  PubMed  Google Scholar 

  52. 52.

    Bredas, J.-L. Mind the gap! Mater. Horiz. 1, 17–19 (2014).

    CAS  Google Scholar 

  53. 53.

    Lu, T. & Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Google Scholar 

  54. 54.

    Nakamura, R. & Nakato, Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J. Am. Chem. Soc. 126, 1290–1298 (2004).

    CAS  PubMed  Google Scholar 

  55. 55.

    Jones, R., Summerville, D. & Basolo, F. Synthetic oxygen carriers related to biological systems. Chem. Rev. 79, 139–179 (1979).

    CAS  Google Scholar 

  56. 56.

    Li, S. et al. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B 190, 26–35 (2016).

    CAS  Google Scholar 

  57. 57.

    Kofuji, Y. et al. Carbon nitride–aromatic diimide–graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency. J. Am. Chem. Soc. 138, 10019–10025 (2016).

    CAS  PubMed  Google Scholar 

  58. 58.

    Govind, N., Lopata, K., Rousseau, R., Andersen, A. & Kowalski, K. Visible light absorption of N-doped TiO2 rutile using (LR/RT)-TDDFT and active space EOMCCSD calculations. J. Phys. Chem. Lett. 2, 2696–2701 (2011).

    CAS  Google Scholar 

  59. 59.

    Bahers, T. L., Adamo, C. & Ciofini, I. A qualitative index of spatial extent in charge-transfer excitations. J. Chem. Theory Comput. 7, 2498–2506 (2011).

    PubMed  Google Scholar 

  60. 60.

    Kraner, S., Scholz, R., Plasser, F., Koerner, C. & Leo, K. Exciton size and binding energy limitations in one-dimensional organic materials. J. Chem. Phys. 143, 244905 (2015).

    CAS  PubMed  Google Scholar 

  61. 61.

    Kraner, S., Prampolini, O. & Cuniberti, G. Exciton binding energy in molecular triads. J. Phys. Chem. C 121, 17088–17095 (2017).

    CAS  Google Scholar 

  62. 62.

    Kislitsyn, D. et al. Spatial mapping of sub-bandgap states induced by local nonstoichiometry in individual lead sulfide nanocrystals. J. Phys. Chem. Lett. 5, 3701–3707 (2014).

    CAS  PubMed  Google Scholar 

  63. 63.

    Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  64. 64.

    Calle-Vallejo, F., Martı´nez, J. I. & Rossmeisl, J. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Phys. Chem. Chem. Phys. 13, 15639–15643 (2011).

    CAS  PubMed  Google Scholar 

  65. 65.

    Xu, H., Cheng, D., Cao, D. & Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1, 339–348 (2018).

    CAS  Google Scholar 

  66. 66.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. J. Phys. Rev. B. 54, 11169–11186 (1996).

    CAS  Google Scholar 

  67. 67.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. J. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  68. 68.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979 (1994).

    Google Scholar 

  70. 70.

    Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes (Cambridge Univ. Press, 2007).

Download references

Acknowledgements

We acknowledge the financial support from the Mitsubishi Chemical Corporation, Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (B, grant no. 20H02847), Grant-in-Aid for JSPS Fellows (DC2, grant no. 20J13064), Project National Natural Science Foundation of China (grant nos. 21805191, 21972094), the Guangdong Basic and Applied Basic Research Foundation (grant no. 2020A1515010982), Shenzhen Pengcheng Scholar Program, Shenzhen Peacock Plan (grant nos. KQJSCX20170727100802505 and KQTD2016053112042971), the Singapore Ministry of Education (Tier 1: RG4/20 and Tier 2: MOET2EP10120-0002) and the Agency for Science, Technology and Research (A*Star IRG: A20E5c0080). We thank X. Huang from the Department of Physics, Southern University of Science and Technology for his help in theoretical calculation and N. Jian from the Electron Microscope Center of the Shenzhen University for his help in HRTEM measurement.

Author information

Affiliations

Authors

Contributions

Z.T., Q.Z. and T.O. conceptualized the project. T.O., C.S. and B.L. supervised the project. Z.T. synthesized the catalysts, conducted the catalytic tests and the related data processing, and performed materials characterization and analysis with the help of H.Y., Q.Z., Y.-R.L. and S.L. K.K. and A.Y. conducted transient absorption spectroscopy. Z.T., W.Y. and C.W. performed the theoretical study. Z.T., H.Y. and B.L. wrote the paper with support from all authors.

Corresponding authors

Correspondence to Chenliang Su or Bin Liu or Teruhisa Ohno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Wei Lin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–45, Tables 1–8, Notes 1–8 and references.

Supplementary Data 1

Atomic coordinations of optimized models for Vienna ab initio simulation package.

Supplementary Data 2

Atomic coordinations of optimized models for Gaussian.

Supplementary Data 3

TDDFT calculation data.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data and .dm3 data.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Teng, Z., Zhang, Q., Yang, H. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat Catal 4, 374–384 (2021). https://doi.org/10.1038/s41929-021-00605-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing