Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Programmable late-stage C−H bond functionalization enabled by integration of enzymes with chemocatalysis


New chemo- and biocatalytic methodology is important for the future sustainable synthesis of essential molecules. Transition metal catalysis enables the late-stage C−H functionalization of some complex molecular scaffolds, providing rapid routes to valuable products, although this is largely dependent on the availability of electronically or sterically predisposed C−H bonds for selective metalation, leaving certain regioselectivities inaccessible. Unlike metal chemocatalysis, enzymes can catalyse C−H bond functionalization, discriminating between near-identical, non-activated C−H bonds, delivering products with exquisite regioselectivity. However, enzymes typically provide access to fewer functionalities than more divergent chemocatalysis. Here we report programmable, regioselective C−H bond functionalization methodologies for the installation of versatile nitrile, amide and carboxylic acid moieties through integration of halogenase enzymes with palladium-catalysed cyanation and subsequent incorporation of nitrile hydratase or nitrilase enzymes. Using two- or three-component chemobiocatalytic systems, the regioselective synthesis of complex target molecules, including pharmaceuticals, can be achieved in a one-pot process operable on a gram scale.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview of site-selective C−H functionalization cascades.
Fig. 2: Scope of the regioselective integrated chemo- and biocatalytic C−H bond cyanation.
Fig. 3: Scope of the regioselective integrated chemo- and biocatalytic C−H bond amidation.
Fig. 4: Scope of the regioselective integrated chemo- and biocatalytic C−H bond carboxylation.

Data availability

Sequences of enzymes used in the study are provided in the Supplementary Information. The original materials and data that support the findings of this study are available within the paper and its Supplementary Information or can be obtained from the corresponding author upon reasonable request.


  1. 1.

    Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C−H bond activation. Nature 417, 507–514 (2002).

    CAS  PubMed  Google Scholar 

  2. 2.

    Gutekunst, W. R. & Baran, P. S. C−H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

    CAS  PubMed  Google Scholar 

  3. 3.

    Abrams, D. J., Provencher, P. A. & Sorensen, E. J. Recent applications of C−H functionalization in complex natural product synthesis. Chem. Soc. Rev. 47, 8925–8967 (2018).

    CAS  PubMed  Google Scholar 

  4. 4.

    Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C−C bond formation via heteroatom-directed C−H bond activation. Chem. Rev. 110, 624–655 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Kuhl, N., Hopkinson, M. N., Wencel-Delord, J. & Glorius, F. Beyond directing groups: transition-metal-catalyzed C−H activation of simple arenes. Angew. Chem. Int. Ed. 51, 10236–10254 (2012).

    CAS  Google Scholar 

  6. 6.

    Nájera, C., Beletskaya, I. P. & Yus, M. Metal-catalyzed regiodivergent organic reactions. Chem. Soc. Rev. 48, 4515–4618 (2019).

    PubMed  Google Scholar 

  7. 7.

    Pitts, A. K., O’Hara, F., Snell, R. H. & Gaunt, M. J. A. Concise and scalable strategy for the total synthesis of dictyodendrin B based on sequential C−H functionalization. Angew. Chem. Int. Ed. 54, 5451–5455 (2015).

    CAS  Google Scholar 

  8. 8.

    Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C−H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Do, H., Khan, R. M. K. & Daugulis, O. A general method for copper-catalyzed arylation of arene C−H bonds. J. Am. Chem. Soc. 130, 15185–15192 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Hull, K. L. & Sanford, M. S. Catalytic and highly regioselective cross-coupling of aromatic C−H substrates. J. Am. Chem. Soc. 129, 11904–11905 (2007).

    CAS  PubMed  Google Scholar 

  11. 11.

    Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C−H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Gandeepan, P. & Ackermann, L. Transient directing groups for transformative C−H activation by synergistic metal catalysis. Chem 4, 199–222 (2018).

    CAS  Google Scholar 

  13. 13.

    Rodrigalvarez, J. et al. Catalytic C(sp3)–H bond activation in tertiary alkylamines. Nat. Chem. 12, 76–81 (2020).

    CAS  PubMed  Google Scholar 

  14. 14.

    He, C., Whitehurst, W. G. & Gaunt, M. J. Palladium-catalyzed C(sp3)–H bond functionalization of aliphatic amines. Chem 5, 1031–1058 (2019).

    CAS  Google Scholar 

  15. 15.

    Wang, X. et al. Ligand-enabled meta-C–H activation using a transient mediator. Nature 519, 334–338 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Friis, S. D., Johansson, M. J. & Ackermann, L. Cobalt-catalysed C−H methylation for late-stage drug diversification. Nat. Chem. 12, 511–519 (2020).

    CAS  PubMed  Google Scholar 

  17. 17.

    Tiwari, V. K. & Kapur, M. Catalyst-controlled positional-selectivity in C-H functionalizations. Org. Biomol. Chem. 17, 1007–1026 (2019).

    CAS  PubMed  Google Scholar 

  18. 18.

    Yanagisawa, S., Ueda, K., Sekizawa, H. & Itami, K. Programmed synthesis of tetraarylthiophenes through sequential C−H arylation. J. Am. Chem. Soc. 131, 14622–14623 (2009).

    CAS  PubMed  Google Scholar 

  19. 19.

    Saidi, O. et al. Ruthenium-catalyzed meta sulfonation of 2-phenylpyridines. J. Am. Chem. Soc. 133, 19298–19301 (2011).

    CAS  PubMed  Google Scholar 

  20. 20.

    Gormisky, P. E. & White, M. C. Catalyst-controlled aliphatic C−H oxidations with a predictive model for site-selectivity. J. Am. Chem. Soc. 135, 14052–14055 (2013).

    CAS  PubMed  Google Scholar 

  21. 21.

    Liao, K. et al. Site-selective and stereoselective functionalization of non-activated tertiary C−H bonds. Nature 551, 609–613 (2017).

    CAS  PubMed  Google Scholar 

  22. 22.

    Davies, H. M. L. & Manning, J. R. Catalytic C−H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Lewis, J., Coelho, P. S. & Arnold, F. H. Enzymatic functionalization of carbon–hydrogen bonds. Chem. Soc. Rev. 40, 2003–2021 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Barry, S. M. et al. Cytochrome P450-catalyzed l-tryptophan nitration in thaxtomin phytotoxin biosynthesis. Nat. Chem. Biol. 8, 814–816 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Pierre, S. et al. Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes. Nat. Chem. Biol. 8, 957–959 (2012).

    CAS  PubMed  Google Scholar 

  26. 26.

    Blasiak, L. C., Vaillancourt, F. H., Walsh, C. T. & Drennan, C. L. Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 440, 368–371 (2006).

    CAS  PubMed  Google Scholar 

  27. 27.

    Dong, C. et al. Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science 309, 2216–2219 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Zhang, R. K. et al. Enzymatic assembly of carbon–carbon bonds via iron-catalysed sp3 C−H functionalization. Nature 565, 67–72 (2019).

    CAS  PubMed  Google Scholar 

  29. 29.

    Prier, C. K., Zhang, R. K., Buller, A. R., Brinkmann-Chen, S. & Arnold, F. H. Enantioselective, intermolecular benzylic C−H amination catalysed by an engineered iron-haem enzyme. Nat. Chem. 9, 629–634 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Latham, J., Brandenburger, E., Shepherd, S. A., Menon, B. R. K. & Micklefield, J. Development of halogenase enzymes for use in synthesis. Chem. Rev. 118, 232–269 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Durak, L. J., Payne, J. T. & Lewis, J. C. Late-stage diversification of biologically active molecules via chemoenzymatic C−H functionalization. ACS Catal. 6, 1451–1454 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Rudroff, F. et al. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 1, 12–22 (2018).

    Google Scholar 

  33. 33.

    Gröger, H. & Hummel, W. Combining the ‘two worlds’ of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Curr. Opin. Chem. Biol. 19, 171–179 (2014).

    PubMed  Google Scholar 

  34. 34.

    Litman, Z. C., Wang, Y., Zhao, H. & Hartwig, J. F. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature 560, 355–359 (2018).

    CAS  PubMed  Google Scholar 

  35. 35.

    Takale, B. S., Thakore, R. R., Kong, F. Y. & Lipshutz, B. H. An environmentally responsible 3-pot, 5-step synthesis of the antitumor agent sonidegib using ppm levels of Pd catalysis in water. Green Chem. 21, 6258–6262 (2019).

    CAS  Google Scholar 

  36. 36.

    Latham, J. et al. Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C-H activation. Nat. Commun. 7, 11873 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Sato, H., Hummel, W. & Gröger, H. Cooperative catalysis of noncompatible catalysts through compartmentalization: Wacker oxidation and enzymatic reduction in a one-pot process in aqueous media. Angew. Chem. Int. Ed. 54, 4488–4492 (2015).

    CAS  Google Scholar 

  38. 38.

    Cortes-Clerget, M. et al. Bridging the gap between transition metal- and bio-catalysis via aqueous micellar catalysis. Nat. Commun. 10, 2169 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Chen, W., Vázquez-González, M., Zoabi, A., Abu-Reziq, R. & Willner, I. Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nat. Catal. 1, 689–695 (2018).

    CAS  Google Scholar 

  40. 40.

    Fleming, F. F., Yao, L., Ravikumar, P. C., Funk, L. & Shook, B. C. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J. Med. Chem. 53, 7902–7917 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Anbarasan, P., Schareina, T. & Beller, M. Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: synthesis of benzonitriles. Chem. Soc. Rev. 40, 5049–5067 (2011).

    CAS  PubMed  Google Scholar 

  42. 42.

    Xu, S., Huang, X., Hong, X. & Xu, B. Palladium-assisted regioselective C−H cyanation of heteroarenes using isonitrile as cyanide source. Org. Lett. 14, 4614–4617 (2012).

    CAS  PubMed  Google Scholar 

  43. 43.

    Yang, Y. & Buchwald, S. L. Copper-catalyzed regioselective ortho C−H cyanation of vinylarenes. Angew. Chem. Int. Ed. 53, 8677–8681 (2014).

    CAS  Google Scholar 

  44. 44.

    Shepherd, S. A. et al. A structure-guided switch in the regioselectivity of a tryptophan halogenase. ChemBioChem 17, 821–824 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Payne, J. T., Poor, C. B. & Lewis, J. C. Directed evolution of RebH for site-selective halogenation of large biologically active molecules. Angew. Chem. Int. Ed. 54, 4226–4230 (2015).

    CAS  Google Scholar 

  46. 46.

    Kuduk, S. D. et al. Quinolizidinone carboxylic acids as CNS penetrant, selective M1 allosteric muscarinic receptor modulators. ACS Med. Chem. Lett. 1, 263–267 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Berrade, L. et al. Novel benzo[b]thiophene derivatives as new potential antidepressants with rapid onset of action. J. Med. Chem. 54, 3086–3090 (2011).

    CAS  PubMed  Google Scholar 

  48. 48.

    Senecal, T. D., Shu, W. & Buchwald, S. L. A general, practical palladium-catalyzed cyanation of (hetero)aryl chlorides and bromides. Angew. Chem. Int. Ed. 52, 10035–10039 (2013).

    CAS  Google Scholar 

  49. 49.

    Frese, M. & Sewald, N. Enzymatic halogenation of tryptophan on a gram scale. Angew. Chem. Int. Ed. 54, 298–301 (2015).

    CAS  Google Scholar 

  50. 50.

    Sabatini, M. T., Boulton, L. T., Sneddon, H. F. & Sheppard, T. D. A green chemistry perspective on catalytic amide bond formation. Nat. Catal. 2, 10–17 (2019).

    CAS  Google Scholar 

  51. 51.

    Ballatore, C., Huryn, D. M. & Smith, A. B. Carboxylic acid (bio)isosteres in drug design. ChemMedChem 8, 385–395 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Boogaerts, I. I. F. & Nolan, S. P. Carboxylation of C−H bonds using N-heterocyclic carbene gold(i) complexes. J. Am. Chem. Soc. 132, 8858–8859 (2010).

    CAS  PubMed  Google Scholar 

  53. 53.

    Gao, Y., Cai, Z., Li, S. & Li, G. Rhodium(i)-catalyzed aryl C−H carboxylation of 2‑arylanilines with CO2. Org. Lett. 21, 3663–3669 (2019).

    CAS  PubMed  Google Scholar 

  54. 54.

    Wuensch, C. et al. Regioselective enzymatic carboxylation of phenols and hydroxystyrene derivatives. Org. Lett. 14, 1974–1977 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Wu, S., Snajdrova, R., Moore, J. C., Baldenius, K. & Bornscheuer, U. T. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 60, 88–119 (2021).

    CAS  Google Scholar 

  56. 56.

    Andorfer, M. C., Park, H. J., Vergara-Coll, J. & Lewis, J. C. Directed evolution of RebH for catalyst-controlled halogenation of indole C−H bonds. Chem. Sci. 7, 3720–3729 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Fisher, B. F., Snodgrass, H. M., Jones, K. A., Andorfer, M. & Lewis, J. C. Site-selective C−H halogenation using flavin-dependent halogenases identified via family-wide activity profiling. ACS Cent. Sci. 5, 1844–1856 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We acknowledge BBSRC (grant BB/R01034X/1), EPSRC and GlaxoSmithKline for support awarded to J.M. We are grateful to L. Bering and A. J. Herbert for helpful discussions. R. Sung and K. Hollywood from Michael Barber Centre for Mass Spectrometry and M. J. Cliff (NMR) are also acknowledged for analytical support. We are also grateful to Prozomix for providing some of the enzymes screened in this study.

Author information




J.M. led the project. E.J.C, J.L., S.A.S., I.K., M.F.G. and J.M. designed experiments. E.J.C. and J.M. co-wrote the paper. E.J.C., J.L., S.A.S., I.K., A.D.-R., M.F.G. and J.M. analysed data and reviewed the manuscript.

Corresponding author

Correspondence to Jason Micklefield.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Samik Nanda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–5, Figs. 1–135 and References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Craven, E.J., Latham, J., Shepherd, S.A. et al. Programmable late-stage C−H bond functionalization enabled by integration of enzymes with chemocatalysis. Nat Catal 4, 385–394 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing