Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis

Abstract

The simultaneous achievement of both high ammonia yield and Faradaic efficiency in electrochemical nitrogen reduction is a long-sought-after goal. However, due to the strong competing hydrogen evolution and extremely low solubility of N2 in aqueous systems, thermodynamic modulation at the catalyst level is insufficient, leaving the current performance still far from practical application. Here, we rationally control the diffusion of the reactants to obtain suppressed proton supply and greatly enhanced nitrogen flux using proton-filtering covalent organic frameworks, forcing a highly selective and active nitrogen reduction. In this proof-of-concept system, we achieved a high performance in the electrochemical ammonia synthesis (ammonia yield rate 287.2 ± 10.0 μg h−1\({\rm{mg}}_{\rm{cat.}}^{-1}\), Faradaic efficiency 54.5 ± 1.1%) using a traditional carbon-based catalyst. The proposed strategy successfully optimizes the mass transfer that greatly facilitates nitrogen reduction, providing powerful guidelines for achieving green ammonia production at a more practical level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MD simulations and experimental verifications of the H+ diffusion.
Fig. 2: MD simulations and experimental verifications of the N2 diffusion.
Fig. 3: In situ characterization and electrochemical responses.
Fig. 4: Electroreduction of N2 to NH3 under ambient conditions.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information files or from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gruber, N. & Galloway, J. N. An earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat. Catal. 2, 377–380 (2019).

    Article  CAS  Google Scholar 

  4. Cheng, H. et al. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 30, 1803694 (2018).

    Article  Google Scholar 

  5. Qiu, W. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 9, 3485 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen, G. –F. et al. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 139, 9771–9774 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, M. et al. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 10, 341 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, G. –F. et al. Advances in electrocatalytic N2 reduction-strategies to tackle the selectivity challenge. Small Methods 3, 1800337 (2019).

    Article  Google Scholar 

  9. Cao, N. et al. Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nat. Commun. 10, 2877 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Luo, Y. et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule 3, 279–289 (2019).

    Article  CAS  Google Scholar 

  11. Tang, C. & Qiao, S. –Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 48, 3166–3180 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, C. et al. B-N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency. Small 15, 1805029 (2019).

    Article  Google Scholar 

  13. Cui, X., Tang, C. & Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8, 1800369 (2018).

    Article  Google Scholar 

  14. Hawtof, R. et al. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system. Sci. Adv. 5, eaat5778 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Suryanto, B. H. R. et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019).

    Article  CAS  Google Scholar 

  16. Zhang, L., Ding, L. –X., Chen, G. –F., Yang, X. & Wang, H. Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem. Int. Ed. 58, 2612–2616 (2019).

    Article  CAS  Google Scholar 

  17. Hao, Y. –C. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2, 448–456 (2019).

    Article  CAS  Google Scholar 

  18. Lu, S., Lee, D. H. & Liu, C. Modeling of electrocatalytic dinitrogen reduction on microstructured electrodes. Small Methods 3, 1800332 (2018).

    Article  Google Scholar 

  19. Lee, H. K. et al. Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach. Sci. Adv. 4, eaar3208 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Singh, A. R. et al. Electrochemical ammonia synthesis-the selectivity challenge. ACS Catal. 7, 706–709 (2017).

    Article  CAS  Google Scholar 

  21. Battino, R., Rettich, T. R. & Tominaga, T. The solubility of nitrogen and air in liquids. J. Phys. Chem. Ref. Data 3, 563–600 (1984).

    Article  Google Scholar 

  22. Liu, S. et al. Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat. Commun. 10, 3898 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhou, F. et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 10, 2516–2520 (2017).

    Article  CAS  Google Scholar 

  24. Riscoe, A. R. et al. Transition state and product diffusion control by polymer-nanocrystal hybrid catalysts. Nat. Catal. 2, 852–863 (2019).

    Article  CAS  Google Scholar 

  25. Siberio-Pérez, D. Y., Wong-Foy, A. G., Yaghi, O. M. & Matzger, A. J. Raman spectroscopic investigation of CH4 and N2 adsorption in metal−organic frameworks. Chem. Mater. 19, 3681–3685 (2007).

    Article  Google Scholar 

  26. He, L. et al. Core–shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem. Int. Ed. 52, 3741–3745 (2013).

    Article  CAS  Google Scholar 

  27. Lee, J. –W. & Yoon, J. –H. Preferential occupation of CO2 molecules in hydroquinone clathrates formed from CO2/N2 gas mixtures. J. Phys. Chem. C. 115, 22647–22651 (2011).

    Article  CAS  Google Scholar 

  28. Légaré, M. –A. et al. Nitrogen fixation and reduction at boron. Science 359, 896–900 (2018).

    Article  PubMed  Google Scholar 

  29. Yu, X. et al. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2, 1610–1622 (2018).

    Article  CAS  Google Scholar 

  30. Ling, C., Niu, X., Li, Q., Du, A. & Wang, J. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 140, 14161–14168 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, Y. –Y. et al. Electrocatalysis of ethanol on a Pd electrode in alkaline media: an in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study. ACS Catal. 4, 798–803 (2014).

    Article  CAS  Google Scholar 

  32. Ataka, K., Yotsuyanagi, T. & Osawa, M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. 100, 10664–10672 (1996).

    Article  CAS  Google Scholar 

  33. Yao, Y., Wang, H., Yuan, X. –Z., Li, H. & Shao, M. Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Lett. 4, 1336–1341 (2019).

    Article  CAS  Google Scholar 

  34. Ziegler, L. D. & Hudson, B. Resonance rovibronic Raman scattering of ammonia. J. Phys. Chem. 88, 1110–1116 (1984).

    Article  CAS  Google Scholar 

  35. Philip, D., Eapen, A. & Aruldhsa, G. Vibrational and surface enhanced Raman scattering spectra of sulfamic acid. J. Solid State Chem. 116, 217–223 (1995).

    Article  CAS  Google Scholar 

  36. Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  Google Scholar 

  38. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  PubMed  Google Scholar 

  39. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  40. Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    Article  CAS  Google Scholar 

  41. Potoff, J. J. & Siepmann, J. I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. Aiche J. 47, 1676–1682 (2001).

    Article  CAS  Google Scholar 

  42. Botti, A., Bruni, F., Ricci, M. A. & Soper, A. K. Eigen versus Zundel complexes in HCl-water mixtures. J. Chem. Phys. 125, 014508 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. III & Skif, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  Google Scholar 

  44. Lennard-Jones, J. E. Cohesion. Proc. Phys. Soc. 43, 461–482 (1931).

  45. Lorentz, H. Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann. Phys. 248, 127–136 (1881).

    Article  Google Scholar 

  46. Berthelot, D. Sur le mélange des gaz. C. R. Hebd. Seances Acad. Sci. 126, 1703–1855 (1898).

    Google Scholar 

  47. Stewart, J. J. P. MOPAC Manual 7th edn (Fujitsu Limited, 1993).

  48. Zhu, D., Zhang, L., Ruther, R. E. & Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 12, 836–841 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, Q. –H. et al. Methods for the detection and determination of nitrite and nitrate: a review. Talanta 165, 709–720 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Long, G. L. & Winefordner, J. D. Limit of detection. A closer look at the IUPAC definition. Anal. Chem. 55, 712A–714A (1983).

    CAS  Google Scholar 

  51. Watt, G. W. & Chrisp, J. D. A spectrophotometric method for the determination of hydrazine. Anal. Chem. 24, 2006–2008 (1952).

    Article  CAS  Google Scholar 

  52. Chen, Q., Liu, Y., Edwards, M. A., Liu, Y. & White, H. S. Nitrogen bubbles at Pt nanoelectrodes in a nonaqueous medium: oscillating behavior and geometry of critical nuclei. Anal. Chem. 92, 6408–6414 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Ye from the Tan Kah Kee Innovation Laboratory for helping us with the measurements. We also thank the beam line at the National Synchrotron Radiation Research Centre in Taiwan for helping us with the X-ray absorption spectroscopy experiments. We acknowledge the support from the National Natural Science Foundation of China (grant nos. 21703149, 51622208, 51872193 and 5192500409) and Natural Science Foundation of Jiangsu Province (grant nos. BK20190827 and BK20181168).

Author information

Authors and Affiliations

Authors

Contributions

C.Y. conceived and designed this work. S.L., T.Q. and M.W. prepared the materials and performed the material characterization and electrochemical measurements. H.J. conducted the theoretical calculations. X.S. and C.W. helped with the material characterizations. All authors discussed the results and commented on the article.

Corresponding author

Correspondence to Chenglin Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Matteo Cargnello, Anna Klinkova, Chenghua Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–42 and Tables 111.

Supplementary Data 1

Initial and final configurations of the systems in MD simulations.

Supplementary Data 2

The atomic coordinates of the optimized computational models for density functional theory calculations.

Supplementary Data 3

Source data for Supplementary Figs. 12 and 31–35.

Source data

Source Data Fig. 1

Source data for plotting the curves and symbols.

Source Data Fig. 2

Source data for plotting the curves and symbols.

Source Data Fig. 3

Source data for plotting the curves and symbols.

Source Data Fig. 4

Source data for plotting the curves and symbols.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Qian, T., Wang, M. et al. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat Catal 4, 322–331 (2021). https://doi.org/10.1038/s41929-021-00599-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00599-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing