Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metal–support cooperation in Al(PO3)3-supported platinum nanoparticles for the selective hydrogenolysis of phenols to arenes

Abstract

The hydrogenolysis of phenols to yield arenes is of importance to the production of fine chemicals, as well as biorefinery application; however, the conversion of phenols through cleavage of their strong C(sp2)–OH bonds remains a highly challenging task in synthetic chemistry. Here we report the use of Al(PO3)3-supported platinum nanoparticles for the selective hydrogenolysis of a broad range of phenols (including sterically highly demanding phenols and lignin model compounds) to afford arenes under relatively low temperatures (<150 °C) and ambient pressure (Ar/H2 = 9/1, 1 atm). This heterogeneous catalyst is expected to find a broad application in fine chemical synthesis and biorefinery.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Methods for hydrodeoxygenation of phenols to arenes.
Fig. 2: Characterization of the catalysts.
Fig. 3: Hydrogenolysis of various lignin model compounds.
Fig. 4: Leaching test and catalyst reuse experiment.
Fig. 5: Possible reaction pathways.
Fig. 6: Control experiments for mechanistic studies.

Data availability

The data supporting the findings of this study are available within this article and its Supplementary Information file or from the authors on reasonable request.

References

  1. 1.

    Bender, T. A., Dabrowski, J. A. & Gagné, M. R. Homogeneous catalysis for the production of low-volume, high-value chemicals from biomass. Nat. Rev. Chem. 2, 35–46 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    Qiu, Z. & Li, C.-J. Transformations of less-activated phenols and phenol derivatives via C−O cleavage. Chem. Rev. 120, 10454–10515 (2020).

    CAS  Article  Google Scholar 

  3. 3.

    Gillet, S. et al. Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem. 19, 4200–4233 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Saidi, M. et al. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ. Sci. 7, 103–129 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Jing, Y., Dong, L., Guo, Y., Liu, X. & Wang, Y. Chemicals from lignin: a review of the catalytic conversion involving hydrogen. ChemSusChem 13, 4181–4198 (2020).

    CAS  Article  Google Scholar 

  6. 6.

    Ohta, H. et al. Surface modification of a supported Pt catalyst using ionic liquids for selective hydrodeoxygenation of phenols into arenes under mild conditions. Chem. Eur. J. 25, 14762–14766 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    Liu, W. et al. Ambient-pressure and low-temperature upgrading of lignin bio-oil to hydrocarbons using a hydrogen buffer catalytic system. Nat. Energy 5, 759–767 (2020).

    CAS  Article  Google Scholar 

  8. 8.

    Jongerius, A. L., Jastrzebski, R., Bruijnincx, P. C. A. & Weckhuysen, B. M. CoMo sulfide-catalysed hydrodeoxygenation of lignin model compounds: an extended reaction network for the conversion of monomeric and dimeric substrates. J. Catal. 285, 315–323 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    Shao, Y. et al. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nat. Commun. 8, 16104–16112 (2017).

    Article  Google Scholar 

  10. 10.

    Huang, Y.-B., Yan, L., Chen, M.-Y., Guo, Q.-X. & Fu, Y. Selective hydrogenolysis of phenols and phenyl ethers to arenes through direct C–O cleavage over ruthenium–tungsten bifunctional catalysts. Green Chem. 17, 3010–3017 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Luo, Z. et al. Hydrothermally stable Ru/HZSM-5-catalysed selective hydrogenolysis of lignin-derived substituted phenols to bio-arenes in water. Green Chem. 18, 5845–5858 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Song, W. et al. Surface engineering of CoMoS nanosulfide for hydrodeoxygenation of lignin-derived phenols to arenes. ACS Catal. 9, 259–268 (2019).

  13. 13.

    Liu, G. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9, 810–816 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Wu, K. et al. Engineering Co nanoparticles supported on defect MoS2–x for mild deoxygenation of lignin-derived phenols to arenes. ACS Energy Lett. 5, 1330–1336 (2020).

    CAS  Article  Google Scholar 

  15. 15.

    Zhang, J. et al. Surface engineering of earth-abundant Fe catalysts for selective hydrodeoxygenation of phenolics in liquid phase. Chem. Sci. 11, 5874–5880 (2020).

    CAS  Article  Google Scholar 

  16. 16.

    Kusumoto, S. & Nozaki, K. Direct and selective hydrogenolysis of arenols and aryl methyl ethers. Nat. Commun. 6, 6296–6302 (2015).

    Article  Google Scholar 

  17. 17.

    Zhang, Y.-F. & Shi, Z.-J. Upgrading cross-coupling reactions for biaryl syntheses. Acc. Chem. Res. 52, 161–169 (2019).

    CAS  Article  Google Scholar 

  18. 18.

    Cacchi, S., Ciattini, P. G., Morera, E. & Ortar, G. Palladium-catalysed triethylammonium formate reduction of aryl triflates. A selective method for the deoxygenation of phenols. Tetrahedron Lett. 27, 5541–5544 (1986).

    CAS  Article  Google Scholar 

  19. 19.

    Tobisu, M., Yamakawa, K., Shimasaki, T. & Chatani, N. Nickel-catalysed reductive cleavage of aryl−oxygen bonds in alkoxy- and pivaloxyarenes using hydrosilanes as a mild reducing agent. Chem. Commun. 47, 2946–2948 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    Mesganaw, T., Fine Nathel, N. F. & Garg, N. K. Cine substitution of arenes using the aryl carbamate as a removable directing group. Org. Lett. 14, 2918–2921 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Alvarez-Bercedo, P. & Martin, R. Ni-catalysed reduction of inert C−O bonds: a new strategy for using aryl ethers as easily removable directing groups. J. Am. Chem. Soc. 132, 17352–17353 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Sergeev, A. G. & Hartwig, J. F. Selective nickel-catalysed hydrogenolysis of aryl ethers. Science 332, 439–443 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    Shi, W.-J., Li, X.-L., Li, Z.-W. & Shi, Z.-J. Nickel catalysed reduction of arenols under mild conditions. Org. Chem. Front. 3, 375–379 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Ohgi, A. & Nakao, Y. Selective hydrogenolysis of arenols with hydrosilanes by nickel catalysis. Chem. Lett. 45, 45–47 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Xu, H. et al. Reductive cleavage of inert aryl C−O bonds to produce arenes. Chem. Commun. 51, 12212–12215 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Van der meer, H. The crystal structure of a monoclinic form of aluminum metaphosphate, Al(PO3)3. Acta Cryst. B 32, 2423–2426 (1976).

    Article  Google Scholar 

  27. 27.

    Cheng, H., Chen, L., Cooper, A. C., Sha, X. & Pez, G. P. Hydrogen spillover in the context of hydrogen storage using solid-state materials. Energy Environ. Sci. 1, 338–354 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    Sheldon, R. A., Wallau, M., Arends, I. W. C. E. & Schuchardt, U. Heterogeneous catalysts for liquid-phase oxidations: philosophers’ stones or Trojan horses? Acc. Chem. Res. 31, 485–493 (1998).

    CAS  Article  Google Scholar 

  29. 29.

    Nelson, R. C. et al. Experimental and theoretical insights into the hydrogen-efficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2. ACS Catal. 5, 6509–6523 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Massoth, F. E. et al. Catalytic hydrodeoxygenation of methyl-substituted phenols: correlations of kinetic parameters with molecular properties. J. Phys. Chem. B 110, 14283–14291 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    Yoon, Y., Rousseau, R., Weber, R. S., Mei, D. & Lercher, J. A. First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase. J. Am. Chem. Soc. 136, 10287–10298 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Zhou, H., Wang, H., Sadow, A. D. & Slowing, I. I. Toward hydrogen economy: selective guaiacol hydrogenolysis under ambient hydrogen pressure. Appl. Cat. B 270, 118890 (2020).

    CAS  Article  Google Scholar 

  33. 33.

    Gafurov, M. R. et al. Quantitative analysis of Lewis acid centres of γ-alumina by using EPR of the adsorbed anthraquinone as a probe molecule: comparison with the pyridine, carbon monoxide IR, and TPD of ammonia. J. Phys. Chem. C 119, 27410–27415 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Nelson, N. C. et al. Phosphate modified ceria as a Brønsted acidic/redox multifunctional catalyst. J. Mater. Chem. A 5, 4455–4466 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Diallo-Garcia, S. et al. Identification of surface basic sites and acid−base pairs of hydroxyapatite. J. Phys. Chem. C 118, 12744–12757 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Ye, T.-N. et al. Stable single platinum atoms trapped in sub-nanometer cavities in 12CaO·7Al2O3 for chemoselective hydrogenation of nitroarenes. Nat. Commun. 11, 1020–1029 (2020).

    CAS  Article  Google Scholar 

  37. 37.

    Fenton, O. S. et al. Catalytic Lewis acid phosphorylation with pyrophosphates. Tetrahedron 68, 9023–9028 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    Gajewski, E., Steckler, D. K. & Goldberg, R. N. Thermodynamics of the hydrolysis of adenosine 5′-triphosphate to adenosine 5′-diphosphate. J. Biol. Chem. 261, 12733–12737 (1986).

    CAS  Article  Google Scholar 

  39. 39.

    Rotole, J. A. & Sherwood, P. M. A. Aluminum metaphosphate (Al(PO3)3) by XPS. Surf. Sci. Spectra 5, 67–74 (1998).

    CAS  Article  Google Scholar 

  40. 40.

    Chan, G. H., Ong, D. Y., Yen, Z. & Chiba, S. Reduction of N,N-dimethylcarboxamides to aldehydes by sodium hydride–iodide composite. Helv. Chim. Acta. 101, e1800049 (2018).

    Article  Google Scholar 

  41. 41.

    Gong, D. et al. Syndiotactically enriched 1,2-selective polymerisation of 1,3-butadiene initiated by iron catalysts based on a new class of donors. Polymer 50, 5980–5986 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI JP18H05259, JP19K15357, JP20H04803 and JP17H06443. We are grateful to N. Chatani (Osaka University) for helpful discussions. We would like to thank K. Yamaguchi (U. Tokyo) for generous sharing of analytical instruments. A part of this work was conducted at the Advanced Characterisation Nanotechnology Platform of the University of Tokyo, supported by the Nanotechnology Platform of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Affiliations

Authors

Contributions

X.J. and K.N. designed the studies and conceived the main idea. R.T. and X.J. executed all of the experimental work except for the FTIR measurements using the probe molecules. T.A., H.M. and T.S. carried out the FTIR experiments using pyridine or p-cresol as the probe molecule. All authors discussed the results and wrote the paper.

Corresponding authors

Correspondence to Xiongjie Jin or Kyoko Nozaki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Changhai Liang, Igor Slowing and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1 and 2, Figs. 1–15, GC chromatograms, GC–MS or NMR spectra of the crude reaction mixtures and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Tsukimura, R., Aihara, T. et al. Metal–support cooperation in Al(PO3)3-supported platinum nanoparticles for the selective hydrogenolysis of phenols to arenes. Nat Catal 4, 312–321 (2021). https://doi.org/10.1038/s41929-021-00598-x

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing