Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dicarboxylation of alkenes, allenes and (hetero)arenes with CO2 via visible-light photoredox catalysis


Light-driven utilization of CO2 in organic synthesis is highly attractive because it mimics nature. However, such transformations are mainly limited to the incorporation of only a single CO2 molecule into organic compounds, far less than the number of CO2 molecules fixed in the product in photosynthesis. Here we report the visible-light photoredox-catalysed dicarboxylation of alkenes, allenes and (hetero)arenes with the incorporation of two CO2 molecules. This method realizes the formation of multiple C–C bonds with high chemo- and diastereoselectivities under mild conditions, which represents a simple, rapid and sustainable approach to valuable dicarboxylic acids. Moreover, this transition-metal-free protocol exhibits a low catalyst loading, good functional group tolerance, broad substrate scope, facile scalability and easy product derivatizations to give drug and material molecules. Mechanistic studies indicate a pathway by which a visible-light-induced two-electron reduction via sequential single electron transfer generates radical anions of such unsaturated substrates, broadening the repertoire of strategies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Difunctionalization of alkenes via visible-light photoredox catalysis.
Fig. 2: Screening the reaction conditions.
Fig. 3: Substrate scope of 1,1-diarylethylenes, monoarylethylenes and acrylates.
Fig. 4: Substrate scope of allenes and 1,3-dienes.
Fig. 5: Substrate scope of polycyclic aromatic hydrocarbon.
Fig. 6: Investigation of the mechanism.
Fig. 7
Fig. 8: Gram-scale reaction and product diversification.

Data availability

Details about materials and methods, experimental procedures, mechanistic studies, characterization data and NMR spectra are available in the Supplementary Information. Additional data are available from the corresponding author upon reasonable request. Crystallographic data are available from the Cambridge Crystallographic Data Centre with the following codes: (E)-2aw (CCDC 1922731), cis-8a-Me (CCDC 1956271) and trans-8k′-Me (CCDC 1968028), These data can be obtained free of charge from


  1. 1.

    Ciamician, G. The photochemistry of the future. Science 36, 385–394 (1912).

    CAS  PubMed  Google Scholar 

  2. 2.

    Stephenson, C., Yoon, T. & MacMillan, D. W. C. Visible Light Photocatalysis in Organic Chemistry (Wiley-VCH, 2018).

  3. 3.

    Goddard, J.-P., Ollivier, C. & Fensterbank, L. Photoredox catalysis for the generation of carbon centered radicals. Acc. Chem. Res. 49, 1924–1936 (2016).

    CAS  PubMed  Google Scholar 

  4. 4.

    Hopkinson, M. N., Tlahuext-Aca, A. & Glorius, F. Merging visible light photoredox and gold catalysis. Acc. Chem. Res. 49, 2261–2272 (2016).

    CAS  PubMed  Google Scholar 

  5. 5.

    Ravelli, D., Protti, S. & Fagnoni, M. Carbon–carbon bond forming reactions via photogenerated intermediates. Chem. Rev. 116, 9850–9913 (2016).

    CAS  PubMed  Google Scholar 

  6. 6.

    Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    CAS  PubMed  Google Scholar 

  7. 7.

    Marzo, L., Pagire, S. K., Reiser, O. & König, B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 57, 10034–10072 (2018).

    CAS  Google Scholar 

  8. 8.

    Chen, Y., Lu, L.-Q., Yu, D.-G., Zhu, C.-J. & Xiao, W.-J. Visible light-driven organic photochemical synthesis in China. Sci. China Chem. 62, 24–57 (2019).

    CAS  Google Scholar 

  9. 9.

    Buzzetti, L., Crisenza, G. E. M. & Melchiorre, P. Mechanistic studies in photocatalysis. Angew. Chem. Int. Ed. 58, 3730–3747 (2019).

    CAS  Google Scholar 

  10. 10.

    Koike, T. & Akita, M. New horizons of photocatalytic fluoromethylative difunctionalization of alkenes. Chem 4, 409–437 (2018).

    CAS  Google Scholar 

  11. 11.

    Nguyen, J. D., Tucker, J. W., Konieczynska, M. D. & Stephenson, C. R. J. Intermolecular atom transfer radical addition to olefins mediated by oxidative quenching of photoredox catalysts. J. Am. Chem. Soc. 133, 4160–4163 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Yasu, Y., Koike, T. & Akita, M. Three-component oxytrifluoromethylation of alkenes: highly efficient and regioselective difunctionalization of C=C bonds mediated by photoredox catalysts. Angew. Chem. Int. Ed. 51, 9567–9571 (2012).

    CAS  Google Scholar 

  13. 13.

    Sahoo, B., Hopkinson, M. N. & Glorius, F. Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. J. Am. Chem. Soc. 135, 5505–5508 (2013).

    CAS  PubMed  Google Scholar 

  14. 14.

    Hari, D. P., Hering, T. & König, B. The photoredox-catalyzed Meerwein addition reaction: intermolecular amino–arylation of alkenes. Angew. Chem. Int. Ed. 53, 725–728 (2014).

    Google Scholar 

  15. 15.

    Li, Z.-L., Li, X.-H., Wang, N., Yang, N.-Y. & Liu, X.-Y. Radical-mediated 1,2-formyl/carbonyl functionalization of alkenes and application to the construction of medium-sized rings. Angew. Chem. Int. Ed. 55, 15100–15104 (2016).

    CAS  Google Scholar 

  16. 16.

    Tang, X. & Studer, A. α-Perfluoroalkyl-β-alkynylation of alkenes via radical alkynyl migration. Chem. Sci. 8, 6888–6892 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Yu, J., Wu, Z. & Zhu, C. Efficient docking–migration strategy for selective radical difluoromethylation of alkenes. Angew. Chem. Int. Ed. 57, 17156–17160 (2018).

    CAS  Google Scholar 

  18. 18.

    Zhang, Z., Zhu, L. & Li, C. Copper-catalyzed carbotrifluoromethylation of unactivated alkenes driven by trifluoromethylation of alkyl radicals. Chin. J. Chem. 37, 452–456 (2019).

    CAS  Google Scholar 

  19. 19.

    Grandjean, J. M. & Nicewicz, D. A. Synthesis of highly substituted tetrahydrofurans by catalytic polar-radical-crossover cycloadditions of alkenes and alkenols. Angew. Chem. Int. Ed. 52, 3967–3971 (2013).

    CAS  Google Scholar 

  20. 20.

    Hu, X., Zhang, G., Bu, F. & Lei, A. Selective oxidative [4+2] imine/alkene annulation with H2 liberation induced by photo–oxidation. Angew. Chem. Int. Ed. 57, 1286–1290 (2018).

    CAS  Google Scholar 

  21. 21.

    Senboku, H., Komatsu, H., Fujimura, Y. & Tokuda, M. Efficient electrochemical dicarboxylation of phenyl-substituted alkenes: synthesis of 1-phenylalkane-1,2-dicarboxylic acids. Synlett 3, 418–420 (2001).

    Google Scholar 

  22. 22.

    Pac, C., Ihama, M., Yasuda, M., Miyauchi, Y. & Sakurai, H. Ru(bpy)32+-mediated photoreduction of olefins with 1-benzyl-1,4-dihydronicotinamide: a mechanistic probe for electron-transfer reactions of NAD(P)H-model compounds. J. Am. Chem. Soc. 103, 6495–6497 (1981).

    CAS  Google Scholar 

  23. 23.

    Fruianu, M., Marchetti, M., Melloni, G., Sanna, G. & Seeber, R. Electrochemical reduction of 1,1-diaryl-substituted ethenes in dimethylformamide. J. Chem. Soc. Perkin Trans. 1994, 2039–2044 (1994).

    Google Scholar 

  24. 24.

    Nakajima, M., Fava, E., Loescher, S., Jiang, Z. & Rueping, M. Photoredox-catalyzed reductive coupling of aldehydes, ketones, and imines with visible light. Angew. Chem. Int. Ed. 54, 8828–8832 (2015).

    CAS  Google Scholar 

  25. 25.

    Huang, K., Sun, C.-L. & Shi, Z.-J. Transition-metal-catalyzed C−C bond formation through the fixation of carbon dioxide. Chem. Soc. Rev. 40, 2435–2452 (2011).

    CAS  PubMed  Google Scholar 

  26. 26.

    Liu, Q., Wu, L., Jackstell, R. & Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 6, 5933 (2015).

    PubMed  Google Scholar 

  27. 27.

    Tortajada, A., Juliá-Hernández, F., Börjesson, M., Moragas, T. & Martin, R. Transition-metal-catalyzed carboxylation reactions with carbon dioxide. Angew. Chem. Int. Ed. 57, 15948–15982 (2018).

    CAS  Google Scholar 

  28. 28.

    Zhang, Z. et al. Visible-light-driven catalytic reductive carboxylation with CO2. ACS Catal. 10, 10871–10885 (2020).

    CAS  Google Scholar 

  29. 29.

    Cao, Y., He, X., Wang, N., Li, H.-R. & He, L.-N. Photochemical and electrochemical carbon dioxide utilization with organic compounds. Chin. J. Chem. 36, 644–659 (2018).

    CAS  Google Scholar 

  30. 30.

    Hou, J., Li, J.-S. & Wu, J. Recent development of light-mediated carboxylation using CO2 as the feedstock. Asian J. Org. Chem. 7, 1439–1447 (2018).

    CAS  Google Scholar 

  31. 31.

    Shimomaki, K., Murata, K., Martin, R. & Iwasawa, N. Visible-light-driven carboxylation of aryl halides by the combined use of palladium and photoredox catalysts. J. Am. Chem. Soc. 139, 9467–9470 (2017).

    CAS  PubMed  Google Scholar 

  32. 32.

    Yatham, V. R., Shen, Y. & Martin, R. Catalytic intermolecular dicarbofunctionalization of styrenes with CO2 and radical precursors. Angew. Chem. Int. Ed. 56, 10915–10919 (2017).

    CAS  Google Scholar 

  33. 33.

    Meng, Q.-Y., Wang, S. & König, B. Carboxylation of aromatic and aliphatic bromides and triflates with CO2 by dual visible-light–nickel catalysis. Angew. Chem. Int. Ed. 56, 13426–13430 (2017).

    CAS  Google Scholar 

  34. 34.

    Ye, J.-H. et al. Visible-light-driven iron-promoted thiocarboxylation of styrenes and acrylates with CO2. Angew. Chem. Int. Ed. 56, 15416–15420 (2017).

    CAS  Google Scholar 

  35. 35.

    Meng, Q.-Y., Wang, S., Huff, G. S. & König, B. Ligand-controlled regioselective hydrocarboxylation of styrenes with CO2 by combining visible light and nickel catalysis. J. Am. Chem. Soc. 140, 3198–3201 (2018).

    CAS  PubMed  Google Scholar 

  36. 36.

    Ju, T. et al. Selective and catalytic hydrocarboxylation of enamides and imines with CO2 to generate α,α-disubstituted α-amino acids. Angew. Chem. Int. Ed. 57, 13897–13901 (2018).

    CAS  Google Scholar 

  37. 37.

    Fan, X., Gong, X., Ma, M., Wang, R. & Walsh, P. J. Visible light-promoted CO2 fixation with imines to synthesize diaryl α-amino acids. Nat. Commun. 9, 4936 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Hou, J. et al. Visible-light-mediated metal-free difunctionalization of alkenes with CO2 and silanes or C(sp3)−H alkanes. Angew. Chem. Int. Ed. 57, 17220–17224 (2018).

    CAS  Google Scholar 

  39. 39.

    Fu, Q. et al. Transition metal-free phosphonocarboxylation of alkenes with carbon dioxide via visible-light photoredox catalysis. Nat. Commun. 10, 3592 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Meng, Q.-Y., Schirmer, T. E., Berger, A. L., Donabauer, K. & König, B. Photocarboxylation of benzylic C–H bonds. J. Am. Chem. Soc. 141, 11393–11397 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Wang, S., Cheng, B.-Y., Sršen, M. & König, B. Umpolung difunctionalization of carbonyls via visible-light photoredox catalytic radical-carbanion relay. J. Am. Chem. Soc. 142, 7524–7531 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Wang, H., Gao, Y., Zhou, C. & Li, G. Visible-light-driven reductive carboarylation of styrenes with CO2 and aryl halides. J. Am. Chem. Soc. 142, 8122–8129 (2020).

    CAS  PubMed  Google Scholar 

  43. 43.

    Zhou, W.-J. et al. Reductive dearomative arylcarboxylation of indoles with CO2 via visible-light photoredox catalysis. Nat. Commun. 11, 3263 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Song, L. et al. Visible-light photoredox-catalyzed remote difunctionalizing carboxylation of unactivated alkenes with CO2. Angew. Chem. Int. Ed. 59, 21121–21128 (2020).

    CAS  Google Scholar 

  45. 45.

    Huang, H. et al. Visible light-driven anti-Markovnikov hydrocarboxylation of acrylates and styrenes with CO2. CCS Chem. 2, 1746–1756 (2020).

    Google Scholar 

  46. 46.

    Schmalzbauer, M. et al. Redox-neutral photocatalytic C−H carboxylation of arenes and styrenes with CO2. Chem 6, 2658–2672 (2020).

    CAS  Google Scholar 

  47. 47.

    Armstrong, D. W. et al. Potent enantioselective auxin: indole-3-succinic acid. J. Agric. Food Chem. 50, 473–476 (2002).

    CAS  PubMed  Google Scholar 

  48. 48.

    Young, W. B. et al. Small molecule inhibitors of plasma kallikrein. Bioorg. Med. Chem. Lett. 16, 2034–2036 (2006).

    CAS  PubMed  Google Scholar 

  49. 49.

    Obniska, J., Chlebek, I. & Kaminski, K. Synthesis and anticonvulsant properties of new Mannich bases derived from 3,3-disubstituted pyrrolidine-2,5-diones. Part IV. Arch. Pharm. Chem. Life Sci. 345, 713–722 (2012).

    CAS  Google Scholar 

  50. 50.

    Inoue, S., Yokota, K., Tatamidani, H., Fukumoto, Y. & Chatani, N. Chelation-assisted transformation: synthesis of 1,4-dicarboxylate esters by the Rh-catalyzed carbonylation of internal alkynes with pyridin-2-ylmethanol. Org. Lett. 8, 2519–2522 (2006).

    CAS  PubMed  Google Scholar 

  51. 51.

    Yuan, G.-Q., Jiang, H.-F., Lin, C. & Liao, S.-J. Efficient electrochemical synthesis of 2-arylsuccinic acids from CO2 and aryl-substituted alkenes with nickel as the cathode. Electrochim. Acta 53, 2170–2176 (2008).

    CAS  Google Scholar 

  52. 52.

    Liu, J. et al. Selective palladium-catalyzed carbonylation of alkynes: an atom-economic synthesis of 1,4-dicarboxylic acid diesters. J. Am. Chem. Soc. 140, 10282–10288 (2018).

    CAS  PubMed  Google Scholar 

  53. 53.

    Baizer, M. M. & Chruma, J. L. Electrolytic reductive coupling. XX. mixed reductive couplings with acrylonitrile reductions at the cathode voltage required for the more difficultly reduced partner. J. Electrochem. Soc. 118, 450–453 (1971).

    CAS  Google Scholar 

  54. 54.

    Derien, S., Dunach, E. & Perichon, J. From stoichiometry to catalysis: electroreductive coupling of alkynes and carbon dioxide with nickel–bipyridine complexes. Magnesium ions as the key for catalysis. J. Am. Chem. Soc. 113, 8447–8454 (1991).

    CAS  Google Scholar 

  55. 55.

    Kimura, M., Moritani, N. Sawaki, Y. in Electroorganic Synthesis (eds Little, R. D. & Weinberg, N. L.) 61–65 (Marcel Dekker, 1991).

  56. 56.

    Rawner, T., Lutsker, E., Kaiser, C. A. & Reiser, O. The different faces of photoredox catalysts: visible-light-mediated atom transfer radical addition (ATRA) reactions of perfluoroalkyl iodides with styrenes and phenylacetylenes. ACS Catal. 8, 3950–3956 (2018).

    CAS  Google Scholar 

  57. 57.

    Yang, R., Chen, L., Ruan, C., Zhong, H.-Y. & Wang, Y.-Z. Chain folding in main-chain liquid crystalline polyesters: from π–I stacking toward shape memory. J. Mater. Chem. C 2, 6155–6164 (2014).

    CAS  Google Scholar 

  58. 58.

    Ma, S. Some typical advances in the synthetic applications of allenes. Chem. Rev. 105, 2829–2872 (2005).

    PubMed  Google Scholar 

  59. 59.

    Huang, X. & Ma, S. Allenation of terminal alkynes with aldehydes and ketones. Acc. Chem. Res. 52, 1301–1312 (2019).

    CAS  PubMed  Google Scholar 

  60. 60.

    Ma, S. Control of regio- and stereoselectivity in electrophilic addition reactions of allenes. Pure Appl. Chem. 79, 261 (2007).

    CAS  Google Scholar 

  61. 61.

    Chatterjee, A. & König, B. Birch-type photoreduction of arenes and heteroarenes by sensitized electron transfer. Angew. Chem. Int. Ed. 58, 14289–14294 (2019).

    CAS  Google Scholar 

  62. 62.

    Filardo, G., Gambino, S. & Silvestri, G. Electrocarboxylation of styrene through homogeneous redox catalysis. J. Electroanal. Chem. 177, 303–309 (1984).

    CAS  Google Scholar 

  63. 63.

    Ito, Y., Uozu, Y. & Matsuura, T. Photocarboxylation in the presence of aromatic amines and carbon dioxide. J. Chem. Soc. Chem. Commun. 1988, 562–564 (1988).

    Google Scholar 

  64. 64.

    Gennaro, A., Isse, A. A., Saveant, J.-M., Severin, M.-G. & Vianello, E. Homogeneous electron transfer catalysis of the electrochemical reduction of carbon dioxide. Do aromatic anion radicals react in an outer-sphere manner? J. Am. Chem. Soc. 118, 7190–7196 (1996).

    CAS  Google Scholar 

  65. 65.

    Gan, Z. J. et al. Discovery, stereospecific characterization and peripheral modification of 1-(pyrrolidin-1-ylmethyl)-2-[(6-chloro-3-oxo-indan)-formyl]-1,2,3,4-tetrahydroisoquinolines as novel selective κ opioid receptor agonists. Org. Biomol. Chem. 13, 5656–5673 (2015).

    CAS  PubMed  Google Scholar 

Download references


We thank S. Ma and H. Qian (Fudan University) for their samples of allenes, valuable discussion and suggestions. We also thank R. Martin (ICIQ) and J. J. Chruma (Sichuan University) for valuable discussion and help. Financial support was provided by the National Natural Science Foundation of China (21822108, 21772129), the Fok Ying Tung Education Foundation (161013), Sichuan Science and Technology Program (20CXTD0112), Beijing National Laboratory for Molecular Sciences (BNLMS201903), Fundamental Research Funds from Sichuan University (2020SCUNL102), and the Fundamental Research Funds for the Central Universities. We also thank X. Wang from the Analysis and Testing Center of Sichuan University and the comprehensive training platform of the Specialized Laboratory in the College of Chemistry at Sichuan University for compound testing.

Author information




D.-G.Y. and T.J. conceived and designed the study, and wrote the paper. T.J., Y.-Q.Z., K.-G.C., Q.F., J.-H.Y., G.-Q.S., X.-F.L., L.C. and L.-L.L. performed the experiments and mechanistic studies. T.J. performed the crystallographic studies. All the authors contributed to the analysis and interpretation of the data.

Corresponding author

Correspondence to Da-Gang Yu.

Ethics declarations

Competing interests

A patent on this work has been filed in China under patent application number 201910319124.9.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Supplementary information

Supplementary Information

Supplementary Methods, References, Figs. 1–12 and Tables 1–5.

Supplementary Data 1

Crystallographic Data of compound (E)-2aw.cif.

Supplementary Data 2

Crystallographic Data of compound

Supplementary Data 3

Crystallographic Data of compound trans-8k’-Me.cif.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ju, T., Zhou, YQ., Cao, KG. et al. Dicarboxylation of alkenes, allenes and (hetero)arenes with CO2 via visible-light photoredox catalysis. Nat Catal 4, 304–311 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing