Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Palladium-catalysed enantioselective diacetoxylation of terminal alkenes

Abstract

Optically pure 1,2-diols are one of the most privileged structural motifs. They are not only frequently found in natural products and drugs, but are also regarded as very useful synthons in organic synthesis. Asymmetric dioxygenation of alkenes could potentially provide a highly efficient and straightforward method for the synthesis of enantioenriched 1,2-diols. Although enantioselective dioxygenations on different alkenes have been studied widely, those on terminal alkenes remain elusive. Herein, we report a Pd(ii)-catalysed enantioselective diacetoxylation of terminal alkenes, including challenging substrates such as 1-propene and 1-butene. Notably, ligand engineering of the simple pyridinyl oxazoline ligand is essential for substantially increasing the catalytic reactivity of Pd(OAc)2. The method exhibits an exquisite selectivity for terminal alkenes, allowing precise asymmetric diacetoxylation reactions from feedstock alkenes to complex molecules bearing multiple alkenic moieties, which provides rapid and efficient access to various synthetically useful chiral 1,2-diols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic AD of alkenes.
Fig. 2: The asymmetric diacetoxylation of alkenes using a palladium/Pyox catalyst.
Fig. 3: Scope of the asymmetric diacetoxylation of alkenes.
Fig. 4: Reaction of polyenes and synthetic applications of chiral 1,2-diacetates.
Fig. 5: Mechanistic investigation.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Crystallographic data for the structures reported in this article are available from the Cambridge Crystallographic Data Centre with the following deposition numbers: CCDC 2024583 (22), CCDC 1998173 (Pd(L5)Cl2), CCDC 2024584 (Pd(L7)Cl2) and CCDC 2024585 (Pd(L1)Cl2). All other data supporting the findings of this study are available within the paper and its Supplementary Information, or from the corresponding author upon reasonable request.

References

  1. Casiraghi, G., Zanardi, F., Rassu, G. & Spanu, P. Stereoselective approaches to bioactive carbohydrates and alkaloids—with a focus on recent syntheses drawing from the chiral pool. Chem. Rev. 95, 1677–1716 (1995).

    Article  CAS  Google Scholar 

  2. Parenty, A., Moreau, X., Niel, G. & Campagne, J.-M. Update 1 of: macrolactonizations in the total synthesis of natural products. Chem. Rev. 113, PR1–PR40 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Kolb, H. C., VanNieuwenhze, M. S. & Sharpless, K. B. Catalytic asymmetric dihydroxylation. Chem. Rev. 94, 2483–2547 (1994).

    Article  CAS  Google Scholar 

  4. Bataille, C. J. R. & Donohoe, T. J. Osmium-free direct syn-dihydroxylation of alkenes. Chem. Soc. Rev. 40, 114–128 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Neisius, N. M. & Plietker, B. Diastereoselective Ru-catalyzed cross-metathesis–dihydroxylation sequence. An efficient approach toward enantiomerically enriched syn-diols. J. Org. Chem. 73, 3218–3227 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Bhunnoo, R. A., Hu, Y., Lainé, D. I. & Brown, R. C. D. An asymmetric phase-transfer dihydroxylation reaction. Angew. Chem. Int. Ed. 41, 3479–3480 (2002).

    Article  CAS  Google Scholar 

  7. de Boer, J. W. et al. Manganese catalysed asymmetric cis-dihydroxylation with H2O2. Chem. Commun. 3747–3749 (2008)..

  8. Suzuki, K., Oldenburg, P. D. & Que, L. Jr. Iron-catalyzed asymmetric olefin cis-dihydroxylation with 97% enantiomeric excess. Angew. Chem. Int. Ed. 47, 1887–1889 (2008).

    Article  CAS  Google Scholar 

  9. Zang, C. et al. Highly enantioselective iron-catalyzed cis-dihydroxylation of alkenes with hydrogen peroxide oxidant via an FeIII-OOH reactive intermediate. Angew. Chem. Int. Ed. 55, 10253–10257 (2016).

    Article  CAS  Google Scholar 

  10. Zhang, Y. & Sigman, M. S. Palladium(II)-catalyzed enantioselective aerobic dialkoxylation of 2-propenyl phenols: a pronounced effect of copper additives on enantioselectivity. J. Am. Chem. Soc. 129, 3076–3077 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Fujita, M., Wakita, M. & Sugimura, T. Enantioselective Prévost and Woodward reactions using chiral hypervalent iodine(III): switchover of stereochemical course of an optically active 1,3-dioxolan-2-yl cation. Chem. Commun. 47, 3983–3985 (2011).

    Article  CAS  Google Scholar 

  12. Haubenreisser, S., Wöste, T. H., Martínez, C., Ishihara, K. & Muñiz, K. Structurally defined molecular hypervalent iodine catalysts for intermolecular enantioselective reactions. Angew. Chem. Int. Ed. 55, 413–417 (2016).

    Article  CAS  Google Scholar 

  13. De Faveri, G., Ilyashenko, G. & Watkinson, M. Recent advances in catalytic asymmetric epoxidation using the environmentally benign oxidant hydrogen peroxide and its derivatives. Chem. Soc. Rev. 40, 1722–1760 (2011).

    Article  PubMed  Google Scholar 

  14. Zhu, Y., Wang, Q., Cornwall, R. G. & Shi, Y. Organocatalytic asymmetric epoxidation and aziridination of olefins and their synthetic applications. Chem. Rev. 114, 8199–8256 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Katsuki, T. & Sharpless, K. B. The first practical method for asymmetric epoxidation. J. Am. Chem. Soc. 102, 5974–5976 (1980).

    Article  CAS  Google Scholar 

  16. Tokunaga, M., Larrow, J. F., Kakiuchi, F. & Jacobsen, E. N. Asymmetric catalysis with water: dfficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science 277, 936–938 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Tu, Y., Wang, Z.-X. & Shi, Y. An efficient asymmetric epoxidation method for trans-olefins mediated by a fructose-derived ketone. J. Am. Chem. Soc. 118, 9806–9807 (1996).

    Article  CAS  Google Scholar 

  18. Heravi, M. M., Zadsirjan, V., Esfandyari, M. & Lashaki, T. B. Applications of Sharpless asymmetric dihydroxylation in the total synthesis of natural products. Tetrahedron Asymmetry 28, 987–1043 (2017).

    Article  CAS  Google Scholar 

  19. Fang, L., Yan, L., Haeffner, F. & Morken, J. P. Carbohydrate-catalyzed enantioselective alkene diboration: enhanced reactivity of 1,2-bonded diboron complexes. J. Am. Chem. Soc. 138, 2508–2511 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kliman, L. T., Mlynarski, S. N. & Morken, J. P. Pt-catalyzed enantioselective diboration of terminal alkenes with B2(pin)2. J. Am. Chem. Soc. 131, 13210–13211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jensen, K. H. & Sigman, M. S. Mechanistic approaches to palladium-catalyzed alkene difunctionalization reactions. Org. Biomol. Chem. 6, 4083–4088 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cardona, F. & Goti, A. Metal-catalysed 1,2-diamination reactions. Nat. Chem. 1, 269–275 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wickens, Z. K., Guzmán, P. E. & Grubbs, R. H. Aerobic palladium-catalyzed dioxygenation of alkenes enabled by catalytic nitrite. Angew. Chem. Int. Ed. 54, 236–240 (2015).

    Article  CAS  Google Scholar 

  25. Wang, A., Jiang, H. & Chen, H. Palladium-catalyzed diacetoxylation of alkenes with molecular oxygen as sole oxidant. J. Am. Chem. Soc. 131, 3846–3847 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Alexanian, E. J., Lee, C. & Sorensen, E. J. Palladium-catalyzed ring-forming aminoacetoxylation of alkenes. J. Am. Chem. Soc. 127, 7690–7691 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, G. & Stahl, S. S. Highly regioselective Pd-catalyzed intermolecular aminoacetoxylation of alkenes and evidence for cis-aminopalladation and SN2 C–O bond formation. J. Am. Chem. Soc. 128, 7179–7181 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Kalyani, D. & Sanford, M. S. Oxidatively intercepting Heck intermediates: Pd-catalyzed 1,2- and 1,1-arylhalogenation of alkenes. J. Am. Chem. Soc. 130, 2150–2151 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Huang, J. et al. Dual role of H2O2 in palladium-catalyzed dioxygenation of terminal alkenes. Org. Lett. 19, 3354–3357 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Huang, J. et al. B2pin2-mediated palladium-catalyzed diacetoxylation of aryl alkenes with O2 as oxygen source and sole oxidant. Org. Lett. 20, 5090–5093 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Li, Y., Song, D. & Dong, V. M. Palladium-catalyzed olefin dioxygenation. J. Am. Chem. Soc. 130, 2962–2964 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Kang, Y.-B. & Gade, L. H. The nature of the catalytically active species in olefin dioxygenation with PhI(OAc)2: metal or proton? J. Am. Chem. Soc. 133, 3658–3667 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Neufeldt, S. R. & Sanford, M. S. Asymmetric chiral ligand-directed alkene dioxygenation. Org. Lett. 15, 46–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Qi, X. et al. Enantioselective Pd(II)-catalyzed intramolecular oxidative 6-endo aminoacetoxylation of unactivated alkenes. J. Am. Chem. Soc. 140, 7415–7419 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Werner, E. W., Mei, T.-S., Burckle, A. J. & Sigman, M. S. Enantioselective Heck arylations of acyclic alkenyl alcohols using a redox-relay strategy. Science 338, 1455–1458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, D., Crispino, G. A. & Sharpless, K. B. Selective asymmetric dihydroxylation (AD) of dienes. J. Am. Chem. Soc. 114, 7570–7571 (1992).

    Article  CAS  Google Scholar 

  37. RajanBabu, T. V., Yan, Y.-Y. & Shin, S. Synthesis, characterization, and applicability of neutral polyhydroxy phospholane derivatives and their rhodium(I) complexes, for reactions in organic and aqueous media. J. Am. Chem. Soc. 123, 10207–10213 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Spivey, A. C., Maddaford, A., Fekner, T., Redgrave, A. J. & Frampton, C. S. Synthesis of C2-symmetric analogues of 4-(pyrrolidino)pyridine: new chiral nucleophilic catalysts. J. Chem. Soc. Perkin 1, 3460–3468 (2000).

  39. Uckun, F. M., Mao, C., Vassilev, A. O., Huang, H. & Jan, S.-T. Structure-based design of a novel synthetic spiroketal pyran as a pharmacophore for the marine natural product spongistatin 1. Bioorg. Med. Chem. Lett. 10, 541–545 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Eskici, M., Karanfil, A., Özer, M. S., Kabak, Y. & Durucasu, İ. Asymmetric synthesis of (S)-dihydrokavain from L-malic acid. Synth. Commun. 48, 2382–2390 (2018).

    Article  CAS  Google Scholar 

  41. Martynow, J. G. et al. A new synthetic approach to high-purity (15R)-latanoprost. Eur. J. Org. Chem. 4, 689–703 (2007).

    Article  Google Scholar 

  42. Wang, H., Yan, L., Wu, Y. & Chen, F. Chloramphenicol base chemistry. Part 10: asymmetric synthesis of α-hydroxy chiral alcohols via intramolecular Michael additions of γ-hydroxy-α, β-unsaturated enones with chloramphenicol base derived bifunctional urea organocatalysts. Tetrahedron 73, 2793–2800 (2017).

    Article  CAS  Google Scholar 

  43. González, I. C. & Forsyth, C. J. Total synthesis of thyrsiferyl 23-acetate, a specific inhibitor of protein phosphatase 2A and an anti-leukemic inducer of apoptosis. J. Am. Chem. Soc. 122, 9099–9108 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Natural Science Foundation of China (grant numbers 21532009, 21971255, 21821002, 21790330 and 21761142010), the Science and Technology Commission of Shanghai Municipality (grant numbers 19590750400 and 17JC1401200), the Strategic Priority Research Program (number XDB20000000) and the Key Research Program of Frontier Sciences (QYZDJSSW-SLH055) of the Chinese Academy of Sciences. P.C. also thanks the Youth Innovation Promotion Association of the Chinese Academy of Sciences (number 2018292).

Author information

Authors and Affiliations

Authors

Contributions

B.T. and G.L. conceived the work and designed the experiments. B.T. predominantly performed the laboratory experiments. X.L. collected and analysed the X-ray data. B.T., P.C. and G.L. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Guosheng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Erik Alexanian, Huanfeng Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–9, Figs. 1–9, methods, discussion and refs. 1–20.

Supplementary Data 1

X-ray structure of 22.

Supplementary Data 2

X-ray structure of Pd(L1)Cl2.

Supplementary Data 3

X-ray structure of Pd(L5)Cl2.

Supplementary Data 4

X-ray structure of Pd(L7)Cl2.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, B., Chen, P., Leng, X. et al. Palladium-catalysed enantioselective diacetoxylation of terminal alkenes. Nat Catal 4, 172–179 (2021). https://doi.org/10.1038/s41929-021-00574-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00574-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing