Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure dependency of the atomic-scale mechanisms of platinum electro-oxidation and dissolution


Platinum dissolution and restructuring due to surface oxidation are primary degradation mechanisms that limit the lifetime of platinum-based electrocatalysts for electrochemical energy conversion. Here, we have studied well-defined Pt(100) and Pt(111) electrode surfaces by in situ high-energy surface X-ray diffraction, online inductively coupled plasma mass spectrometry and density functional theory calculations to elucidate the atomic-scale mechanisms of these processes. The locations of the extracted platinum atoms after Pt(100) oxidation reveal distinct differences from the Pt(111) case, which explains the different surface stability. The evolution of a specific oxide stripe structure on Pt(100) produces unstable surface atoms that are prone to dissolution and restructuring, leading to one order of magnitude higher dissolution rates.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Dissolution and atomic-scale structural changes during Pt oxidation.
Fig. 2: Atomic structure of the PE site on Pt(100).
Fig. 3: Atomistic view of PE and dissolution on Pt(111) and Pt(100).

Data availability

The raw X-ray data as well as the atomic coordinates of the optimized computational models have been deposited in the repository All other data supporting the findings of this study are available within the article and its Supplementary Information, or from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The custom software for the analysis of the CTR data and the custom BINoculars backend for HESXRD structure factor determination are deposited in the repository All other software used for this study is publicly available or can be obtained from the corresponding author upon reasonable request.


  1. 1.

    Meier, J. C. et al. Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotech. 5, 44–67 (2014).

    Article  CAS  Google Scholar 

  2. 2.

    Climent, V. & Feliu, J. M. Thirty years of platinum single crystal electrochemistry. J. Solid State Electrochem. 15, 1297–1315 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    Conway, B. E. & Jerkiewicz, G. Surface orientation dependence of oxide film growth at platinum single crystals. J. Electroanal. Chem. 339, 123–146 (1992).

    CAS  Article  Google Scholar 

  4. 4.

    You, H., Zurawski, D. J., Nagy, Z. & Yonco, R. M. In-situ x-ray reflectivity study of incipient oxidation of Pt(111) surface in electrolyte solutions. J. Chem. Phys. 100, 4699–4702 (1994).

    CAS  Article  Google Scholar 

  5. 5.

    Tidswell, I., Markovic, N. & Ross, P. Potential dependent surface structure of the Pt(1 1 1) electrolyte interface. J. Electroanal. Chem. 376, 119–126 (1994).

    Article  Google Scholar 

  6. 6.

    Wakisaka, M., Udagawa, Y., Suzuki, H., Uchida, H. & Watanabe, M. Structural effects on the surface oxidation processes at Pt single-crystal electrodes studied by X-ray photoelectron spectroscopy. Energy Environ. Sci. 4, 1662–1666 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Gómez-Marín, A. M. & Feliu, J. M. Oxide growth dynamics at Pt(111) in absence of specific adsorption: a mechanistic study. Electrochim. Acta 104, 367–377 (2013).

    Article  CAS  Google Scholar 

  8. 8.

    Tanaka, H. et al. Infrared reflection absorption spectroscopy of OH adsorption on the low index planes of pt. Electrocatalysis 6, 295–299 (2014).

    Article  CAS  Google Scholar 

  9. 9.

    Sugimura, F., Nakamura, M. & Hoshi, N. The oxygen reduction reaction on kinked stepped surfaces of Pt. Electrocatalysis 8, 46–50 (2016).

    Article  CAS  Google Scholar 

  10. 10.

    Huang, Y.-F., Kooyman, P. J. & Koper, M. T. M. Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy. Nat. Commun. 7, 12440 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Sugimura, F. et al. In situ observation of Pt oxides on the low index planes of Pt using surface enhanced Raman spectroscopy. Phys. Chem. Chem. Phys. 19, 27570–27579 (2017).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Furuya, N. & Shibata, M. Structural changes at various Pt single crystal surfaces with potential cycles in acidic and alkaline solutions. J. Electroanal. Chem. 467, 85–91 (1999).

    CAS  Article  Google Scholar 

  13. 13.

    Itaya, K., Sugawara, S., Sashikata, K. & Furuya, N. In situ scanning tunneling microscopy of platinum (111) surface with the observation of monatomic steps. J. Vac. Sci. Technol. A 8, 515–519 (1990).

    CAS  Article  Google Scholar 

  14. 14.

    Lopes, P. P. et al. Relationships between atomic level surface structure and stability/activity of platinum surface atoms in aqueous environments. ACS Catal. 6, 2536–2544 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Lopes, P. P. et al. Dynamics of electrochemical Pt dissolution at atomic and molecular levels. J. Electroanal. Chem. 819, 123–129 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Sandbeck, D. J. et al. Dissolution of platinum single crystals in acidic medium. ChemPhysChem 20, 2997–3003 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Ruge, M. et al. Structural reorganization of Pt(111) electrodes by electrochemical oxidation and reduction. J. Am. Chem. Soc. 139, 4532–4539 (2017).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Ruge, M. et al. Electrochemical oxidation of smooth and nanoscale rough Pt(111): an in situ surface X-ray scattering study. J. Electrochem. Soc. 164, H608–H614 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Jacobse, L., Huang, Y.-F., Koper, M. T. M. & Rost, M. J. Correlation of surface site formation to nanoisland growth in the electrochemical roughening of Pt(111). Nat. Mater. 17, 277–282 (2018).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Arulmozhi, N., Esau, D., Lamsal, R. P., Beauchemin, D. & Jerkiewicz, G. Structural transformation of monocrystalline platinum electrodes upon electro-oxidation and electro-dissolution. ACS Catal. 8, 6426–6439 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Topalov, A. A. et al. Dissolution of platinum: limits for the deployment of electrochemical energy conversion? Angew. Chem. Int. Ed. 51, 12613–12615 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Gómez-Marín, A. M. & Feliu, J. M. Pt(111) surface disorder kinetics in perchloric acid solutions and the influence of specific anion adsorption. Electrochim. Acta 82, 558–569 (2012).

    Article  CAS  Google Scholar 

  23. 23.

    Drnec, J. et al. Initial stages of Pt(111) electrooxidation: dynamic and structural studies by surface X-ray diffraction. Electrochim. Acta 224, 220–227 (2017).

    Article  CAS  Google Scholar 

  24. 24.

    Drnec, J., Harrington, D. & Magnussen, O. Electrooxidation of Pt(111) in acid solution. Curr. Opin. Electrochem. 4, 69–75 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Liu, Y., Barbour, A., Komanicky, V. & You, H. X-ray crystal truncation rod studies of surface oxidation and reduction on Pt(111). J. Phys. Chem. C. 120, 16174–16178 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Fantauzzi, D., Mueller, J. E., Sabo, L., van Duin, A. C. T. & Jacob, T. Surface buckling and subsurface oxygen: atomistic insights into the surface oxidation of Pt(111). ChemPhysChem 16, 2797–2802 (2015).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Eslamibidgoli, M. J. & Eikerling, M. H. Atomistic mechanism of Pt extraction at oxidized surfaces: insights from DFT. Electrocatalysis 7, 345–354 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Gu, Z. & Balbuena, P. B. Chemical environment effects on the atomic oxygen absorption into Pt(111) subsurfaces. J. Phys. Chem. C. 111, 17388–17396 (2007).

    CAS  Article  Google Scholar 

  29. 29.

    Rodes, A., Zamakhchari, M. A., El Achi, K. & Clavilier, J. Electrochemical behaviour of Pt(100) in various acidic media: part I. On a new voltammetric profile of Pt(100) in perchloric acid and effects of surface defects. J. Electroanal. Chem. 305, 115–129 (1991).

    CAS  Article  Google Scholar 

  30. 30.

    Gustafson, J. et al. High-energy surface X-ray diffraction for fast surface structure determination. Science 343, 758–761 (2014).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Devarajan, S. P., Hinojosa, J. A. & Weaver, J. F. STM study of high-coverage structures of atomic oxygen on Pt(1 1 1): p(2 × 1) and Pt oxide chain structures. Surf. Sci. 602, 3116–3124 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Van Spronsen, M. A., Frenken, J. W. & Groot, I. M. Observing the oxidation of platinum. Nat. Commun. 8, 429 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Xing, L., Jerkiewicz, G. & Beauchemin, D. Ion exchange chromatography coupled to inductively coupled plasma mass spectrometry for the study of Pt electro-dissolution. Anal. Chim. Acta 785, 16–21 (2013).

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Cherevko, S., Kulyk, N. & Mayrhofer, K. J. Durability of platinum-based fuel cell electrocatalysts: dissolution of bulk and nanoscale platinum. Nano Energy 29, 275–298 (2016).

    Article  CAS  Google Scholar 

  35. 35.

    Cherevko, S., Topalov, A. A., Zeradjanin, A. R., Keeley, G. P. & Mayrhofer, K. J. J. Temperature-dependent dissolution of polycrystalline platinum in sulfuric acid electrolyte. Electrocatalysis 5, 235–240 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Geiger, S. Stability Investigations of Iridium-Based Catalysts Towards Acidic Water Splitting. Dissertation, Ruhr-Universität Bochum (2018).

  37. 37.

    Lamsal, R. P., Jerkiewicz, G. & Beauchemin, D. Enhancement of the capabilities of inductively coupled plasma mass spectrometry using monosegmented flow analysis. Anal. Chem. 90, 13842–13847 (2018).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Sandbeck, D. J. S. On the Dissolution of Platinum: From Fundamental to Advanced Catalytic Materials. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg (2020).

  39. 39.

    Magnussen, O. M., Krug, K., Ayyad, A. H. & Stettner, J. In situ diffraction studies of electrode surface structure during gold electrodeposition. Electrochim. Acta 53, 3449–3458 (2008).

    CAS  Article  Google Scholar 

  40. 40.

    Drnec, J. et al. Pt oxide and oxygen reduction at Pt(111) studied by surface X-ray diffraction. Electrochem. Commun. 84, 50–52 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Ashiotis, G. et al. The fast azimuthal integration Python library: PyFAI. J. Appl. Crystallogr. 48, 510–519 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Busing, W. R. & Levy, H. A. Angle calculations for 3- and 4-circle X-ray and neutron diffractometers. Acta Crystallogr. 22, 457–464 (1967).

    CAS  Article  Google Scholar 

  43. 43.

    Wang, J., Ocko, B., Davenport, A. & Isaacs, H. In situ x-ray-diffraction and -reflectivity studies of the Au(111)/electrolyte interface: Reconstruction and anion adsorption. Phys. Rev. B 46, 10321–10338 (1992).

    CAS  Article  Google Scholar 

  44. 44.

    Roobol, S., Onderwaater, W., Drnec, J., Felici, R. & Frenken, J. BINoculars: data reduction and analysis software for two-dimensional detectors in surface X-ray diffraction. J. Appl. Crystallogr. 48, 1324–1329 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Vlieg, E. Integrated intensities using a six-circle surface X-ray diffractometer. J. Appl. Crystallogr. 30, 532–543 (1997).

    CAS  Article  Google Scholar 

  46. 46.

    Drnec, J. et al. Integration techniques for surface X-ray diffraction data obtained with a two-dimensional detector. J. Appl. Crystallogr. 47, 365–377 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    Feidenhans’l, R. Surface structure determination by X-ray diffraction. Surf. Sci. Rep. 10, 105–188 (1989).

    Article  Google Scholar 

  48. 48.

    Press, W. H., Teukolsky, S. A., Vettering, W. T. & Flannery, B. P.Numerical Recipes in C: The Art of Scientific Computing 2nd edn, (Cambridge Univ. Press, 1992).

  49. 49.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  50. 50.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  51. 51.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Lide, D. R. (ed) CRC Handbook of Chemistry and Physics (CRC Press, 2005).

  53. 53.

    Calle-Vallejo, F., de Morais, R., Illas, F., Loffreda, D. & Sautet, P. Affordable estimation of solvation contributions to the adsorption energies of oxygenates on metal nanoparticles. J. Phys. Chem. C. 123, 5578–5582 (2019).

    CAS  Article  Google Scholar 

  54. 54.

    He, Z.-D., Hanselman, S., Chen, Y.-X., Koper, M. T. M. & Calle-Vallejo, F. Importance of solvation for the accurate prediction of oxygen reduction activities of Pt-based electrocatalysts. J. Phys. Chem. Lett. 8, 2243–2246 (2017).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  56. 56.

    Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys. 10, 3722–3730 (2008).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Janthon, P. et al. Bulk properties of transition metals: a challenge for the design of universal density functionals. J. Chem. Theory Comput. 10, 3832–3839 (2014).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Bizzotto, F. et al. Examining the structure sensitivity of the oxygen evolution reaction on Pt single-crystal electrodes: a combined experimental and theoretical study. ChemPhysChem 20, 3154–3162 (2019).

    CAS  PubMed  Article  Google Scholar 

Download references


We acknowledge the European Synchrotron Radiation Facility for provision of SXRD facilities, and H. Isern and T. Dufrane for their help with the SXRD experiments. Funding is acknowledged from the NSERC (grant no. RGPIN-2017-04045) and Deutsche Forschungsgemeinschaft (grant nos. MA 1618/23 and CH 1763/5-1). F.C.-V acknowledges funding from Spanish MICIUN RTI2018-095460-B-I00 and María de Maeztu MDM-2017-0767 grants, and thanks RES for supercomputing time at SCAYLE (projects QS-2019-3-0018, QS-2019-2-0023, and QCM-2019-1-0034) and MareNostrum (project QS-2020-1-0012). The use of supercomputing facilities at SURFsara was sponsored by NWO Physical Sciences, with financial support by NWO.

Author information




T.F., J.D., N.S., M.R., D.A.H. and O.M.M. designed and performed the SXRD experiments. T.F. analysed the SXRD data. D.J.S.S. and S.C. designed and performed the SFC-ICP-MS experiments. D.J.S.S. analysed the SFC-ICP-MS data. F.C.-V. performed the DFT calculations. T.F., J.D., D.A.H., D.J.S.S., S.C., F.C.-V. and O.M.M. were involved in the interpretation of the results and prepared the manuscript.

Corresponding author

Correspondence to Olaf M. Magnussen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cyclic voltammograms measured in the electrochemical cell used for the Surface X-ray Diffraction measurements.

Cyclic voltammograms of (a) Pt(100) and (b) Pt(111) in 0.1 M HClO4 with a scan rate of 50 mV/s.

Source data

Extended Data Fig. 2 Crystal truncation rods of Pt(100) at 0.12 V prior to surface oxidation and after oxide reduction.

Crystal truncation rods (CTR) of the pristine Pt(100) surface after sample preparation and the CTRs of the roughened Pt(100) surface after oxide formation at 1.17 V and subsequent oxide reduction at 0.12 V. The grey lines indicate the CTRs of a bulk terminated Pt(100) surface. The decrease of the CTR structure factor after surface oxidation can be attributed to the formation of adatoms Ptad and vacancies in the Pt1 layer. Best fits with a quantitative model (solid blue line) that includes these surface defects result in a Ptad coverage of 0.07 ML.

Source data

Extended Data Fig. 3 Crystal truncation rods (CTR) and corresponding CTR fits of Pt(100) close to and in the region of oxide formation.

CTRs of Pt(100) at a potential slightly negative (0.95 V) and three potentials positive (1.07, 1.12 and 1.17 V) of the Oads peak in the cyclic voltammogram (Fig. 1b, Extended Data Fig. 1). Solid lines are the corresponding CTR fits. The CTRs for the different potentials are offset to each other by a factor 10 and shown together with the CTR fits of the smooth surface at 0.95 V (grey lines). Details on the CTR fits are given in the Supplementary Note 3 and the corresponding structural parameters are given in Supplementary Table 4.

Source data

Extended Data Fig. 4 Gibbs energy for the first Pt extraction and the subsequent dissolution of Pt.

(a) Oxygen coverage θO dependent Gibbs energy ΔG for the extraction of the first atom on Pt(111) and Pt(100). (b) ΔG for the dissolution of the extracted atom after first extraction on Pt(111) and first, second and third extraction on Pt(100). The correspondence between the oxygen coverage θO and potential U is in the inset of (b).

Extended Data Fig. 5 Pourbaix diagrams for O adsorption.

Pourbaix diagram of (a) Pt(111) and (b) Pt(100). The dashed line represents the oxygen reduction reaction (O2 + 4(H+ + e) → 2H2O).

Extended Data Fig. 6 Additional views of the lowest-energy structures in the process of Pt extraction.

(a) Top view of the Pt extraction process on Pt(111). (b) Side view of the Pt extraction process on Pt(100).

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Tables 1–6, Notes 1–3 and references.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Averaged CTR structure factors.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Averaged CTR structure factors.

Source Data Extended Data Fig. 3

Unprocessed CTR structure factors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fuchs, T., Drnec, J., Calle-Vallejo, F. et al. Structure dependency of the atomic-scale mechanisms of platinum electro-oxidation and dissolution. Nat Catal 3, 754–761 (2020).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing