Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts

Abstract

Achieving stable, low-cost electrocatalysts represents a daunting challenge towards practical water oxidation reactions. Here, we report that a degraded electrocatalyst can be revivified under catalytic operating conditions by manipulating reversible phase segregation. Under the oxygen evolution reaction conditions, Fe segregation develops in the Ni–Fe hydroxide host lattice, with the formation of FeOOH, resulting in an interface between the FeOOH and the host lattice. A dynamic metal dissolution–redeposition process accelerates the Fe segregation and formation of the FeOOH secondary phase, resulting in catalyst deactivation. Operando synchrotron spectroscopic and microscopic analyses suggest that the phase segregation is reversible between the water oxidation potential and the catalyst reduction potential. Therefore, we have developed an intermittent reduction methodology to revivify the catalytic activity under the operating conditions, enhancing catalyst durability. The present study highlights that tailoring phase segregation at the catalyst/electrolyte interface constitutes an important strategy for revivifying and stabilizing catalytic activity.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Stability of the water oxidation catalyst.
Fig. 2: Phase segregation and structural evolution of the water oxidation catalyst.
Fig. 3: Ni and Fe elemental distribution evolution during the OER.
Fig. 4: Ni and Fe local structural changes during the OER.
Fig. 5: The Fe segregation mechanism.
Fig. 6: Revivification of the water oxidation catalysts.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Irvine, J. T. S. et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 1, 15014–15016 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Lin, F. et al. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries. Nat. Energy 1, 15004–15011 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Gao, Z. W. et al. Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates. Adv. Mater. 31, e1804769 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  6. 6.

    Huang, Z.-F. et al. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329–338 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    Li, S. et al. Ir–O–V catalytic group in Ir-doped NiV(OH)2 for overall water splitting. ACS Energy Lett. 4, 1823–1829 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    Wu, T. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2, 763–772 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    Lopes, P. P. et al. Relationships between atomic level surface structure and stability/activity of platinum surface atoms in aqueous environments. ACS Catal. 6, 2536–2544 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Bergmann, A. et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 6, 8625 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Lee, W., Han, J. W., Chen, Y., Cai, Z. & Yildiz, B. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135, 7909–7925 (2013).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Chen, R. et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 31, e1903909 (2019).

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Polo-Garzon, F., Bao, Z., Zhang, X., Huang, W. & Wu, Z. Surface reconstructions of metal oxides and the consequences on catalytic chemistry. ACS Catal. 9, 5692–5707 (2019).

    CAS  Article  Google Scholar 

  14. 14.

    Koo, B. et al. Sr segregation in perovskite oxides: why it happens and how it exists. Joule 2, 1476–1499 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Zeng, Z., Chang, K.-C., Kubal, J., Markovic, N. M. & Greeley, J. Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion. Nat. Energy 2, 17070–17079 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Maljusch, A., Conradi, O., Hoch, S., Blug, M. & Schuhmann, W. Advanced evaluation of the long-term stability of oxygen evolution electrocatalysts. Anal. Chem. 88, 7597–7602 (2016).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Kuai, C. et al. Fully oxidized Ni–Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction. ACS Catal. 9, 6027–6032 (2019).

    CAS  Article  Google Scholar 

  18. 18.

    Chen, G. et al. An amorphous nickel–iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. Adv. Mater. 31, e1900883 (2019).

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Duan, Y. et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew. Chem. 58, 15772–15777 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    Corrigan, A. D. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 134, 377–384 (1987).

    CAS  Article  Google Scholar 

  21. 21.

    Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Gorlin, M. et al. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 138, 5603–5614 (2016).

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Li, N. et al. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films. Proc. Natl Acad. Sci. USA 114, 1486–1491 (2017).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Bergmann, A. et al. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 1, 711–719 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    Qiu, Z., Tai, C.-W., Niklasson, G. A. & Edvinsson, T. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy Environ. Sci. 12, 572–581 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Huber, A. K. et al. In situ study of electrochemical activation and surface segregation of the SOFC electrode material La0.75Sr0.25Cr0.5Mn0.5O(3+/–𝛿). Phys. Chem. Chem. Phys. 14, 751–758 (2012).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Graves, C., Ebbesen, S. D., Jensen, S. H., Simonsen, S. B. & Mogensen, M. B. Eliminating degradation in solid oxide electrochemical cells by reversible operation. Nat. Mater. 14, 239–244 (2015).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Danilovic, N. et al. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew. Chem. 53, 14016–14021 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Rahman, M. M. et al. Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities. Energy Environ. Sci. 11, 2496–2508 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Lin, R. et al. Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery. Nat. Commun. 10, 1650 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Hu, S. M. Formation of stacking faults and enhanced diffusion in the oxidation of silicon. J. Appl. Phys. 45, 1567–1573 (1974).

    CAS  Article  Google Scholar 

  33. 33.

    Zhang, S. B. & Northrup, J. E. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys. Rev. Lett. 67, 2339–2342 (1991).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Litton, D. A. & Garofalini, S. H. Vitreous silica bulk and surface self-diffusion analysis by molecular dynamics. J. Non-Cryst. Solids 217, 250–263 (1997).

    CAS  Article  Google Scholar 

  35. 35.

    Deng, J. et al. Morphology dynamics of single-layered Ni(OH)2/NiOOH nanosheets and subsequent Fe incorporation studied by in situ electrochemical atomic force microscopy. Nano Lett. 17, 6922–6926 (2017).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Chang, S. H. et al. Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction. Faraday Discuss. 176, 125–133 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Jia, Q. et al. Roles of Mo surface dopants in enhancing the ORR performance of octahedral PtNi nanoparticles. Nano Lett. 18, 798–804 (2018).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Wang, W., Luo, J. & Chen, S. Carbon oxidation reactions could misguide the evaluation of carbon black-based oxygen-evolution electrocatalysts. Chem. Commun. 53, 11556–11559 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Westre, T. E. et al. A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 119, 6297–6314 (1997).

    CAS  Article  Google Scholar 

  40. 40.

    Funke, H., Scheinost, A. C. & Chukalina, M. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 71, 094110 (2005).

    Article  CAS  Google Scholar 

  41. 41.

    Funke, H., Chukalina, M. & Scheinost, A. C. A new FEFF-based wavelet for EXAFS data analysis. J. Synchrotron Radiat. 14, 426–432 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Stevens, M. B. et al. Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem. Mater. 29, 120–140 (2016).

    Article  CAS  Google Scholar 

  43. 43.

    Smith, R. D. L. et al. Geometric distortions in nickel (oxy)hydroxide electrocatalysts by redox inactive iron ions. Energy Environ. Sci. 11, 2476–2485 (2018).

    CAS  Article  Google Scholar 

  44. 44.

    Zou, S. et al. Fe (oxy)hydroxide oxygen evolution reaction electrocatalysis: intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chem. Mater. 27, 8011–8020 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    Stevens, M. B., Trang, C. D. M., Enman, L. J., Deng, J. & Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 139, 11361–11364 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Corrigan, D. A. Electrochemical and spectroscopic evidence on the participation of quadrivalent nickel in the nickel hydroxide redox reaction. J. Electrochem. Soc. 136, 613–619 (1989).

    CAS  Article  Google Scholar 

  47. 47.

    Shin, H., Xiao, H. & Goddard, W. A. III In silico discovery of new dopants for Fe-doped Ni oxyhydroxide (Ni1xFexOOH) catalysts for oxygen evolution reaction. J. Am. Chem. Soc. 140, 6745–6748 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Dionigi, F. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 11, 2522 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Bediako, D. K. et al. Structure–activity correlations in a nickel–borate oxygen evolution catalyst. J. Am. Chem. Soc. 134, 6801–6809 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Gorlin, M. et al. Tracking catalyst redox states and reaction dynamics in Ni–Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 139, 2070–2082 (2017).

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    de Jonge, M. D. & Vogt, S. Hard X-ray fluorescence tomography—an emerging tool for structural visualization. Curr. Opin. Struct. Biol. 20, 606–614 (2010).

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Vogt, S. MAPS: a set of sortware tools for analysis and visualization of 3D X-ray fluorescence data sets. J. Phys. IV Fr. 104, 635–637 (2003).

    CAS  Article  Google Scholar 

  53. 53.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  55. 55.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  56. 56.

    Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    CAS  Article  Google Scholar 

  57. 57.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

    CAS  Article  Google Scholar 

  59. 59.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  61. 61.

    Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Chemistry Startup Funds and the Institute for Critical Technology and Applied Science at Virginia Tech. The work at Tianjin university was supported by the Natural Science Foundation of China (grant nos. 51871160, 51671141 and 51471115). This research used the resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, was supported by the US DOE, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. The authors thank S. Li and Y. Liu of SLAC for assisting the development of the synchrotron operando cells, and W. Liu for assisting the XFM measurements at APS 34-ID-E.

Author information

Affiliations

Authors

Contributions

F.L. and X.W.D. conceived the project. F.L. led the project. C.G.K., F.L. and X.W.D. designed the experiments. C.G.K. synthesized the materials and performed characterization and electrochemical measurements. C.G.K., Z.X., Z.Y. and Y.Z. performed the synchrotron XAS experiments with the assistance of C.-J.S. and D.S. C.G.K., Z.X. and L.L. performed the synchrotron XFM experiments. A.H. assisted with the electrochemical and ICP-MS measurements. C.X. conducted the DFT calculations under the supervision of C.K.D. S.Q. participated in the scientific discussion. C.G.K., F.L. and X.W.D. prepared the figures and wrote the manuscript with the assistance of all the other co-authors. All of the co-authors participated in the scientific discussion.

Corresponding authors

Correspondence to Luxi Li, Xi-Wen Du or Feng Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28, Tables 1–3 and Notes 1 and 2

Supplementary Data 1

Atomic coordinates of the calculated Ni0.75Fe0.25(OH)2 structure where Fe ions are segregated at the edge.

Supplementary Data 2

Atomic coordinates of the calculated Ni0.75Fe0.25(OH)2 structure where Fe ions are uniformly distributed.

Supplementary Data 3

Atomic coordinates of the calculated K1/3(Ni3/4Fe1/4)O2 structure where Fe ions are segregated at the edge.

Supplementary Data 4

Atomic coordinates of the calculated K1/3(Ni3/4Fe1/4)O2 structure where Fe ions are segregated in bulk.

Supplementary Data 5

Atomic coordinates of the calculated K1/3(Ni3/4Fe1/4)O2 structure where Fe ions are uniformly distributed.

Supplementary Data 6

Atomic coordinates of the calculated K1/3(Ni5/6Fe1/6)O2 structure where Fe ions are segregated at the edge.

Supplementary Data 7

Atomic coordinates of the calculated K1/3(Ni5/6Fe1/6)O2 structure where Fe ions are segregated in bulk.

Supplementary Data 8

Atomic coordinates of the calculated K1/3(Ni5/6Fe1/6)O2 structure where Fe ions are uniformly distributed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuai, C., Xu, Z., Xi, C. et al. Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nat Catal 3, 743–753 (2020). https://doi.org/10.1038/s41929-020-0496-z

Download citation

Further reading

Search

Quick links