Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

19F- and 18F-arene deoxyfluorination via organic photoredox-catalysed polarity-reversed nucleophilic aromatic substitution

Abstract

Nucleophilic aromatic substitution (SNAr) is routinely used to install 19F and 18F in aromatic molecules, but is typically limited to electron-deficient arenes due to kinetic barriers associated with C–F bond formation. Here we demonstrate that a polarity-reversed photoredox-catalysed arene deoxyfluorination that operates via cation-radical-accelerated SNAr enables the fluorination of electron-rich arenes with 19F and 18F under mild conditions, and thus complements the traditional arene polarity requirements necessary for SNAr-based fluorination. The utility of our radiofluorination strategy is highlighted by short reaction times, compatibility with multiple nucleofuges and high radiofluorination yields, especially that of an important cancer positron emission tomography agent [18F]5-fluorouracil. Taken together, our fluorination approach enables the development of fluorinated and radiofluorinated compounds that can be difficult to access by classical SNAr strategies, with the potential for use in the synthesis and discovery of positron emission tomography radiopharmaceuticals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for arene fluorination.
Fig. 2: Nucleofuge scope and a rationale for nucleofuge site selectivity.
Fig. 3: 19F fluorination of electron-rich aromatics.
Fig. 4: Rationale for arene selectivity.
Fig. 5: Nucleofuge scope for the synthesis of [18F]4-fluorobiphenyl ([18F]2).
Fig. 6: Reaction scope of 18F fluorination of aromatics.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information or from the authors upon reasonable request.

References

  1. Wang, J. et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem. Rev. 114, 2432–2506 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, Y. et al. Next generation of fluorine-containing pharmaceuticals, compounds currently in Phase II–III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem. Rev. 116, 422–518 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Fujiwara, T. & O’Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluor. Chem. 167, 16–29 (2014).

    Article  CAS  Google Scholar 

  4. Preshlock, S., Tredwell, M. & Gouverneur, V. 18F-labeling of arenes and heteroarenes for applications in positron emission tomography. Chem. Rev. 116, 719–766 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Coenen, H. H. et al. Fluorine-18 radiopharmaceuticals beyond [18F]FDG for use in oncology and neurosciences. Nucl. Med. Biol. 37, 727–740 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Terrier, F. Modern Nucleophilic Aromatic Substitution (Wiley, 2013).

  7. Deng, X. et al. Chemistry for positron emission tomography: recent advances in 11C-, 18F-, 13N-, and 15O-labeling reactions. Angew. Chem. Int. Ed. 58, 2580–2605 (2019).

    Article  CAS  Google Scholar 

  8. Kwan, E. E., Zeng, Y., Besser, H. A. & Jacobsen, E. N. Concerted nucleophilic aromatic substitutions. Nat. Chem. 10, 917–923 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neumann, C. N., Hooker, J. M. & Ritter, T. Concerted nucleophilic aromatic substitution with 19F and 18F. Nature 534, 369–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Watson, D. A. et al. Formation of ArF from LPdAr(F): catalytic conversion of aryl triflates to aryl fluorides. Science 325, 1661–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sather, A. C. et al. A fluorinated ligand enables room-temperature and regioselective Pd-catalyzed fluorination of aryl triflates and bromides. J. Am. Chem. Soc. 137, 13433–13438 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ye, Y., Schimler, S. D., Hanley, P. S. & Sanford, M. S. Cu(OTf)2-mediated fluorination of aryltrifluoroborates with potassium fluoride. J. Am. Chem. Soc. 135, 16292–16295 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Furuya, T., Kaiser, H. M. & Ritter, T. Palladium-mediated fluorination of arylboronic acids. Angew. Chem. Int. Ed. 47, 5993–5996 (2008).

    Article  CAS  Google Scholar 

  14. Ichiishi, N. et al. Copper-catalyzed [18F]fluorination of (mesityl)(aryl)iodonium salts. Org. Lett. 16, 3224–3227 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Campbell, M. G. & Ritter, T. Modern carbon–fluorine bond forming reactions for aryl fluoride synthesis. Chem. Rev. 115, 612–633 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Cardinale, J. et al. Carrier-effect on palladium-catalyzed, nucleophilic 18F-fluorination of aryl triflates. J. Label. Compd Radiopharm. 55, 450–453 (2012).

    Article  CAS  Google Scholar 

  17. Tang, P., Wang, W. & Ritter, T. Deoxyfluorination of phenols. J. Am. Chem. Soc. 133, 11482–11484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schimler, S. D. et al. Nucleophilic deoxyfluorination of phenols via aryl fluorosulfonate intermediates. J. Am. Chem. Soc. 139, 1452–1455 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Schimler, S. D., Froese, R. D. J., Bland, D. C. & Sanford, M. S. Reactions of arylsulfonate electrophiles with NMe4F: mechanistic insight, reactivity, and scope. J. Org. Chem. 83, 11178–11190 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Beyzavi, M. H. et al. 18F-deoxyfluorination of phenols via Ru π-complexes. ACS Cent. Sci. 3, 944–948 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tay, N. E. S. & Nicewicz, D. A. Cation radical accelerated nucleophilic aromatic substitution via organic photoredox catalysis. J. Am. Chem. Soc. 139, 16100–16104 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Holmberg-Douglas, N. & Nicewicz, D. A. Arene cyanation via cation-radical accelerated-nucleophilic aromatic substitution. Org. Lett. 21, 7114–7118 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, W. et al. Direct arene C–H fluorination with 18F via organic photoredox catalysis. Science 364, 1170–1174 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zweig, A., Hodgson, W. G. & Jura, W. H. The oxidation of methoxybenzenes. J. Am. Chem. Soc. 86, 4124–4129 (1964).

    Article  CAS  Google Scholar 

  25. Um, I.-H., Kim, M.-Y. & Dust, J. M. Medium effect (water versus MeCN) on reactivity and reaction pathways for the SNAr reaction of 1-aryloxy-2,4-dinitrobenzenes with cyclic secondary amines. Can. J. Chem. 95, 1273–1279 (2017).

    Article  CAS  Google Scholar 

  26. Schmittel, M. & Burghart, A. Understanding reactivity patterns of radical cations. Angew. Chem. Int. Ed. Engl. 36, 2550–2589 (1997).

    Article  Google Scholar 

  27. Nolte, C., Ammer, J. & Mayr, H. Nucleofugality and nucleophilicity of fluoride in protic solvents. J. Org. Chem. 77, 3325–3335 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, D. W. et al. A new class of SN2 reactions catalyzed by protic solvents: facile fluorination for isotopic labeling of diagnostic molecules. J. Am. Chem. Soc. 128, 16394–16397 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, D. W. et al. Facile nucleophilic fluorination reactions using tert-alcohols as a reaction medium: Significantly enhanced reactivity of alkali metal fluorides and improved selectivity. J. Org. Chem. 73, 957–962 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, D. W., Jeong, H.-J., Lim, S. T. & Sohn, M.-H. Tetrabutylammonium tetra(tert-butyl alcohol)-coordinated fluoride as a facile fluoride source. Angew. Chem. Int. Ed. 47, 8404–8406 (2008).

    Article  CAS  Google Scholar 

  31. Sharma, R. K. & Fry, J. L. Instability of anhydrous tetra-n-alkylammonium fluorides. J. Org. Chem. 48, 2112–2114 (1983).

    Article  CAS  Google Scholar 

  32. Sun, H. & DiMagno, S. G. Anhydrous tetrabutylammonium fluoride. J. Am. Chem. Soc. 127, 2050–2051 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, J.-W. et al. Hydrogen-bond promoted nucleophilic fluorination: concept, mechanism and applications in positron emission tomography. Chem. Soc. Rev. 45, 4638–4650 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Hoover, A. J. et al. A transmetalation reaction enables the synthesis of [18F]5-fluorouracil from [18F]fluoride for human PET imaging. Organometallics 35, 1008–1014 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Webber, E. M., Kauffman, T. L., O’Connor, E. & Goddard, K. A. Systematic review of the predictive effect of MSI status in colorectal cancer patients undergoing 5FU-based chemotherapy. BMC Cancer 15, 156 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lemaire, C. F. et al. Fast production of highly reactive no-carrier-added [18F]fluoride for the labeling of radiopharmaceuticals. Angew. Chem. Int. Ed. 49, 3161–3164 (2010).

    Article  CAS  Google Scholar 

  37. Roth, H. G., Romero, N. A. & Nicewicz, D. A. Experimental and calculated electrochemical potentials of common organic molecules for applications to single-electron redox chemistry. Synlett 27, 714–723 (2016).

    CAS  Google Scholar 

  38. Fowler, J. S., Finn, R. D., Lambrecht, R. M. & Wolf, A. P. The synthesis of 18F-5-fluorouracil. VII. J. Nucl. Med. 14, 63–64 (1973).

    CAS  PubMed  Google Scholar 

  39. Saleem, A. et al. Modulation of fluorouracil tissue pharmacokinetics by eniluracil: in-vivo imaging of drug action. Lancet 355, 2125–2131 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Rotstein, B. H., Stephenson, N. A., Vasdev, N. & Liang, S. H. Spirocyclic hypervalent iodine(iii)-mediated radiofluorination of non-activated and hindered aromatics. Nat. Commun. 5, 4365 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Sulkes, A., Benner, S. E. & Canetta, R. M. Uracil-ftorafur: an oral fluoropyrimidine active in colorectal cancer. J. Clin. Oncol. 16, 3461–3475 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Álvarez, P. et al. 5-Fluorouracil derivatives: a patent review. Expert Opin. Ther. Pat. 22, 107–123 (2012).

    Article  PubMed  CAS  Google Scholar 

  43. Li, M., Liang, Z., Sun, X., Gong, T. & Zhang, Z. A polymeric prodrug of 5-fluorouracil-1-acetic acid using a multi-hydroxyl polyethylene glycol derivative as the drug carrier. PLoS ONE 9, e112888 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sergeev, M. et al. Performing radiosynthesis in microvolumes to maximize molar activity of tracers for positron emission tomography. Commun. Chem. 1, 1–10 (2018).

    Article  CAS  Google Scholar 

  45. Sun, Y. et al. The preliminary study of 16α-[18F]fluoroestradiol PET/CT in assisting the individualized treatment decisions of breast cancer patients. PLoS ONE 10, e0116341 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liao, G. J., Clark, A. S., Schubert, E. K. & Mankoff, D. A. 18F-fluoroestradiol PET: current status and potential future clinical applications. J. Nucl. Med. 57, 1269–1275 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided in part by the National Institutes of Health (NIBIB) 5R01EB014354 (Z.L.), R01EB029451 (Z.L. and D.A.N.), by the UNC Department of Radiology, Biomedical Research Imaging Center and by the UNC Lineberger Comprehensive Cancer Center UNC LCCC pilot grant (start-up fund to Z.L.). N.E.S.T. and V.A.P are grateful for NSF Graduate Research Fellowships. A.L. thanks the American Australian Association for a Chevron Fellowship. W.C. thanks G. Bida for assistance with cyclotron operation.

Author information

Authors and Affiliations

Authors

Contributions

N.E.S.T. and A.L. contributed equally to the conception and discovery of the project, designed and performed experiments and performed data interpretation for 19F-deoxyfluorination. W.C. established the labelling conditions and conducted the aromatic labelling experiments. V.A.P. assisted in the synthesis and analysis of substrates, products and standards for 19F-deoxyfluorination. Z.W. and Z.H. contributed to the initial labelling design and discussion. D.A.N. and Z.L. conceived and supervised the project and experiments. N.E.S.T., D.A.N. and Z.L. wrote the manuscript with contributions from all the authors.

Corresponding authors

Correspondence to Zibo Li or David A. Nicewicz.

Ethics declarations

Competing interests

Z.L. and D.A.N. have filed US Provisional Patent Application no. 62/812,179 on the technology communicated herein.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1. Time dependence studies for deoxyradiofluorination with arene S2.

All radiochemical yields (RCYs) are calculated by HPLC isolation starting from azeotropically dried [18F]TBAF, decay corrected and represent one experiment unless otherwise noted. See Supplementary Table 5 for more details.

Supplementary information

Supplementary Information

Supplemental Methods, Figs. 1–133, Tables 1–63, spectra and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tay, N.E.S., Chen, W., Levens, A. et al. 19F- and 18F-arene deoxyfluorination via organic photoredox-catalysed polarity-reversed nucleophilic aromatic substitution. Nat Catal 3, 734–742 (2020). https://doi.org/10.1038/s41929-020-0495-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-0495-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing