Electrolytic deuteration of unsaturated bonds without using D2


Site-selective deuteration of C–H bonds increases the lifetime and efficacy of drug molecules. Although effective methods to form C(sp2)–D bonds are known, processes for making C(sp3)–D bonds often have low site selectivity, require expensive and unrecoverable D2 gas, or use stoichiometric reagents. Here we report cost-efficient and site-selective reductive deuteration using a tandem electrochemical chemical palladium membrane reactor. This architecture mediates the chemical reaction of deuterium atoms (derived from reusable D2O in an electrochemical compartment) with alkynes, aldehydes and imines. The formation of C(sp3)–D and C(sp2)–D bonds in the isolated chemical compartment is made possible by the deuterium-selective permeability of the membrane that partitions the electrochemical compartment from the chemical compartment. We have utilized the reactor for the deuteration step in the construction of a common drug, cinacalcet, to demonstrate that this method can be used to incorporate deuterium atoms in a pharmaceutical.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Deuteration methodologies for the formation of C(sp3)–D bonds.
Fig. 2: Deuterium incorporation and yield by palladium membrane deuteration of alkynes.
Fig. 3: Deuterium incorporation and yield by palladium membrane deuteration of aldehydes and imines.
Fig. 4: Deuteration chemoselectivity and reaction rates with applied current.
Fig. 5: Synthesis of compound 18.

Data availability

The data supporting the findings in this study are available either within the paper or its Supplementary Information, or from the corresponding author on reasonable request.


  1. 1.

    Wiberg, K. B. The deuterium isotope effect. Chem. Rev. 55, 713–743 (1955).

    CAS  Google Scholar 

  2. 2.

    Belleau, B., Burba, J., Pindell, M. & Reiffenstein, J. Effect of deuterium substitution in sympathomimetic amines on adrenergic responses. Science 133, 102–104 (1961).

    PubMed  CAS  Google Scholar 

  3. 3.

    Schmidt, C. First deuterated drug approved. Nat. Biotechnol. 35, 493–494 (2017).

    PubMed  CAS  Google Scholar 

  4. 4.

    Mullard, A. FDA approves first deuterated drug. Nat. Rev. Drug Discov. 16, 305 (2017).

    PubMed  Google Scholar 

  5. 5.

    DeWitt, S. H. & Maryanoff, B. E. Deuterated drug molecules: focus on FDA-approved deutetrabenazine. Biochemistry 57, 472–473 (2018).

    PubMed  CAS  Google Scholar 

  6. 6.

    Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. C−H Functionalisation for hydrogen isotope exchange. Angew. Chem. Int. Ed. 57, 3022–3047 (2018).

    CAS  Google Scholar 

  7. 7.

    Junk, T. & James Catallo, W. Hydrogen isotope exchange reactions involving C–H (D, T) bonds. Chem. Soc. Rev. 26, 401–406 (1997).

    CAS  Google Scholar 

  8. 8.

    Koniarczyk, J. L., Hesk, D., Overgard, A., Davies, I. W. & McNally, A. A general strategy for site-selective incorporation of deuterium and tritium into pyridines, diazines, and pharmaceuticals. J. Am. Chem. Soc. 140, 1990–1993 (2018).

    PubMed  CAS  Google Scholar 

  9. 9.

    Ma, S., Villa, G., Thuy-Boun, P. S., Homs, A. & Yu, J.-Q. Palladium-catalyzed ortho-selective C–H deuteration of arenes: evidence for superior reactivity of weakly coordinated palladacycles. Angew. Chem. Int. Ed. 53, 734–737 (2014).

    CAS  Google Scholar 

  10. 10.

    Yu, R. P., Hesk, D., Rivera, N., Pelczer, I. & Chirik, P. J. Iron-catalysed tritiation of pharmaceuticals. Nature 529, 195–199 (2016).

    PubMed  Google Scholar 

  11. 11.

    Pieters, G. et al. Regioselective and stereospecific deuteration of bioactive aza compounds by the use of ruthenium nanoparticles. Angew. Chem. Int. Ed. 53, 230–234 (2014).

    CAS  Google Scholar 

  12. 12.

    Yang, H. et al. Site-selective nickel-catalyzed hydrogen isotope exchange in N-heterocycles and its application to the tritiation of pharmaceuticals. ACS Catal. 8, 10210–10218 (2018).

    CAS  Google Scholar 

  13. 13.

    Valero, M. et al. C–H-Functionalization—prediction of selectivity in iridium(i) catalyzed hydrogen isotope exchange competition reactions. Angew. Chem. Int. Ed. 59, 5626–5631 (2020).

    CAS  Google Scholar 

  14. 14.

    Zarate, C., Yang, H., Bezdek, M. J., Hesk, D. & Chirik, P. J. Ni(i)–X Complexes bearing a bulky α-diimine ligand: synthesis, structure, and superior catalytic performance in the hydrogen isotope exchange in pharmaceuticals. J. Am. Chem. Soc. 141, 5034–5044 (2019).

    PubMed  CAS  Google Scholar 

  15. 15.

    Valero, M. et al. NHC‐stabilized iridium nanoparticles as catalysts in hydrogen isotope exchange reactions of anilines. Angew. Chem. Int. Ed. 132, 3545–3550 (2020).

    Google Scholar 

  16. 16.

    Hale, L. V. A. & Szymczak, N. K. Stereoretentive deuteration of α-chiral amines with D2O. J. Am. Chem. Soc. 138, 13489–13492 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Palmer, W. N. & Chirik, P. J. Cobalt-catalyzed stereoretentive hydrogen isotope exchange of C(sp3)–H bonds. ACS Catal. 7, 5674–5678 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  18. 18.

    Valero, M., Weck, R., Güssregen, S., Atzrodt, J. & Derdau, V. Highly selective directed iridium-catalyzed hydrogen isotope exchange reactions of aliphatic amides. Angew. Chem. Int. Ed. 57, 8159–8163 (2018).

    CAS  Google Scholar 

  19. 19.

    Kerr, W. J., Mudd, R. J., Reid, M., Atzrodt, J. & Derdau, V. Iridium-catalyzed Csp3–H activation for mild and selective hydrogen isotope exchange. ACS Catal. 8, 10895–10900 (2018).

    CAS  Google Scholar 

  20. 20.

    Klei, S. R., Golden, J. T., Tilley, T. D. & Bergman, R. G. Iridium-catalyzed H/D exchange into organic compounds in water. J. Am. Chem. Soc. 124, 2092–2093 (2002).

    PubMed  CAS  Google Scholar 

  21. 21.

    Khaskin, E. & Milstein, D. Simple and efficient catalytic reaction for the selective deuteration of alcohols. ACS Catal. 3, 448–452 (2013).

    CAS  Google Scholar 

  22. 22.

    Neubert, L. et al. Ruthenium-catalyzed selective α,β-deuteration of bioactive amines. J. Am. Chem. Soc. 134, 12239–12244 (2012).

    PubMed  CAS  Google Scholar 

  23. 23.

    Zhang, X. et al. Carbene-catalyzed α,γ-deuteration of enals under oxidative conditions. ACS Catal. 10, 5475–5482 (2020).

    CAS  Google Scholar 

  24. 24.

    Loh, Y. Y. et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Michelotti, A. & Roche, M. 40 Years of hydrogen–deuterium exchange adjacent to heteroatoms: a survey. Synthesis 51, 1319–1328 (2019).

    CAS  Google Scholar 

  26. 26.

    Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis (Wiley, 2001).

  27. 27.

    Yang, J. Deuterium: Discovery and Applications in Organic Chemistry (Elsevier, 2016).

  28. 28.

    Liu, J. & Liu, X. Deuteride Materials (Springer, 2019).

  29. 29.

    Than, C., Morimoto, H., Andres, H. & Williams, P. G. Tritium and deuterium labelling studies of alkali metal borohydrides and their application to simple reductions. J. Label. Comp. Radiopharm. 38, 693–711 (1996).

    CAS  Google Scholar 

  30. 30.

    Erb, W. T., Jones, J. R. & Lu, S.-Y. Microwave enhanced deuteriations in the solid state using alumina doped sodium borodeuteride. J. Chem. Res. 23, 728–729 (1999).

    Google Scholar 

  31. 31.

    Li, H. et al. A selective and cost-effective method for the reductive deuteration of activated alkenes. Tetrahedron Lett. 58, 2757–2760 (2017).

    CAS  Google Scholar 

  32. 32.

    Li, H. et al. Pentafluorophenyl esters: highly chemoselective ketyl precursors for the synthesis of α,α-dideuterio alcohols using SmI2 and D2O as a deuterium source. Org. Lett. 22, 1249–1253 (2020).

    PubMed  CAS  Google Scholar 

  33. 33.

    Szostak, M., Spain, M. & Procter, D. J. Selective synthesis of α,α-dideuterio alcohols by the reduction of carboxylic acids using SmI2 and D2O as deuterium source under SET conditions. Org. Lett. 16, 5052–5055 (2014).

    PubMed  CAS  Google Scholar 

  34. 34.

    Sajiki, H. et al. Complete replacement of H2 by D2 via Pd/C-catalyzed H/D exchange reaction. Org. Lett. 6, 3521–3523 (2004).

    PubMed  CAS  Google Scholar 

  35. 35.

    Chandrasekhar, S., Vijaykumar, B. V. D., Mahesh Chandra, B., Raji Reddy, C. & Naresh, P. Flow chemistry approach for partial deuteration of alkynes: synthesis of deuterated taxol side chain. Tetrahedron Lett. 52, 3865–3867 (2011).

    CAS  Google Scholar 

  36. 36.

    Mándity, I. M., Martinek, T. A., Darvas, F. & Fülöp, F. A simple, efficient, and selective deuteration via a flow chemistry approach. Tetrahedron Lett. 50, 4372–4374 (2009).

    Google Scholar 

  37. 37.

    Valero, M. & Derdau, V. Highlights of aliphatic C(sp3)–H hydrogen isotope exchange reactions. J. Labelled Comp. Radiopharm. 63, 266–280 (2019).

    PubMed  Google Scholar 

  38. 38.

    Tomioka, K., Shioiri, T. & Sajiki, H. New Horizons of Process Chemistry:Scalable Reactions and Technologies (Springer, 2017).

  39. 39.

    Qiu, C. et al. Highly crystalline K-intercalated polymeric carbon nitride for visible-light photocatalytic alkenes and alkynes deuterations. Adv. Sci. 6, 1801403 (2019).

    Google Scholar 

  40. 40.

    Fuchs, P. L., Charette, A. B., Rovis, T. & Bode, J. W. Essential Reagents for Organic Synthesis (John Wiley & Sons, 2016).

  41. 41.

    Inoue, H., Abe, T. & Iwakura, C. Successive hydrogenation of styrene at a palladium sheet electrode combined with electrochemical supply of hydrogen. Chem. Commun. 55–56 (1996).

  42. 42.

    Iwakura, C., Yoshida, Y. & Inoue, H. A new hydrogenation system of 4-methylstyrene using a palladinized palladium sheet electrode. J. Electroanal. Chem. 431, 43–45 (1997).

    CAS  Google Scholar 

  43. 43.

    Sherbo, R. S., Delima, R. S., Chiykowski, V. A., MacLeod, B. P. & Berlinguette, C. P. Complete electron economy by pairing electrolysis with hydrogenation. Nat. Catal. 1, 501–507 (2018).

    CAS  Google Scholar 

  44. 44.

    Sherbo, R. S., Kurimoto, A., Brown, C. M. & Berlinguette, C. P. Efficient electrocatalytic hydrogenation with a palladium membrane reactor. J. Am. Chem. Soc. 141, 7815–7821 (2019).

    PubMed  CAS  Google Scholar 

  45. 45.

    Delima, R. S., Sherbo, R. S., Dvorak, D. J., Kurimoto, A. & Berlinguette, C. P. Supported palladium membrane reactor architecture for electrocatalytic hydrogenation. J. Mater. Chem. A. 7, 26586–26595 (2019).

    CAS  Google Scholar 

  46. 46.

    Jansonius, R. P. et al. Hydrogenation without H2 using a palladium membrane flow cell. Cell Rep. Phys. Sci. 1, 100105–100114 (2020).

    Google Scholar 

  47. 47.

    Wicke, E., Brodowsky, H. & Züchner, H. in Hydrogen in Metals II 73–155 (Springer, 1978).

  48. 48.

    Lihn, C. J., Wan, C. C. & Perng, T. P. In situ comparison of diffusivities for hydrogen and deuterium in palladium. J. Appl. Electrochem. 25, 61–67 (1995).

    CAS  Google Scholar 

  49. 49.

    Bhatia, S. et al. Stereoretentive H/D exchange via an electroactivated heterogeneous catalyst at sp3 C–H sites bearing amines or alcohols. Eur. J. Org. Chem. 4230–4235 (2016).

  50. 50.

    Liu, X., Liu, R., Qiu, J., Cheng, X. & Li, G. Chemical-reductant-free electrochemical deuteration reaction using deuterium oxide. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202005765 (2020).

  51. 51.

    Maxted, E. B. The poisoning of metallic catalysts. Adv. Catal. 3, 129–178 (1951).

    Google Scholar 

  52. 52.

    Englisch, M., Jentys, A. & Lercher, J. A. Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO2 and Pt/TiO2. J. Catal. 166, 25–35 (1997).

    CAS  Google Scholar 

  53. 53.

    Hattori, K., Sajiki, H. & Hirota, K. Chemoselective control of hydrogenation among aromatic carbonyl and benzyl alcohol derivatives using Pd/C(en) catalyst. Tetrahedron 57, 4817–4824 (2001).

    CAS  Google Scholar 

  54. 54.

    Puleo, T. R., Strong, A. J. & Bandar, J. S. Catalytic α-selective deuteration of styrene derivatives. J. Am. Chem. Soc. 141, 1467–1472 (2019).

    PubMed  CAS  Google Scholar 

  55. 55.

    Q3D(R1) Elemental Impurities: Guidance for Industry 41 (US Department of Health and Human Services, 2015).

  56. 56.

    Roessler, F. Catalysis in the industrial production of pharmaceuticals and fine chemicals. CHIMIA 50, 106–109 (1996).

    CAS  Google Scholar 

  57. 57.

    Silverman, R. B. & Holladay, M. W. The Organic Chemistry of Drug Design and Drug Action (Academic Press, 2014).

  58. 58.

    Zhang, Z. & Tang, W. Drug metabolism in drug discovery and development. Acta Pharm. Sin. B 8, 721–732 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Guengerich, F. P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 14, 611–650 (2001).

    PubMed  CAS  Google Scholar 

Download references


We thank Y. Ling and J. Zhu at the UBC Mass Spectrometry Centre for assistance with gas chromatography–mass spectrometry and liquid-chromatography–mass spectrometry, M. Ezhova at the nuclear magnetic resonance laboratory and M. Soon at the Pacific Centre for Isotopic and Geochemical Research for ICP–OES experiments. We are grateful to the Canadian Natural Science and Engineering Council (RGPIN-2018-06748), Canadian Foundation for Innovation (229288), Canadian Institute for Advanced Research (BSE-BERL-162173) and Canada Research Chairs for financial support. This research was undertaken thanks in part to funding from Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program.

Author information




A.K. and C.P.B. devised the concept. A.K., R.S.S. and N.W.X.L. performed deuteration experiments. A.K and Y.C. performed characterizations. A.K. and Y.C. performed the deuterated drug synthesis. A.K., R.S.S. and C.P.B. wrote the manuscript. C.P.B. supervised the project.

Corresponding author

Correspondence to Curtis P. Berlinguette.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Methods 1–9.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurimoto, A., Sherbo, R.S., Cao, Y. et al. Electrolytic deuteration of unsaturated bonds without using D2. Nat Catal 3, 719–726 (2020). https://doi.org/10.1038/s41929-020-0488-z

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing