Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Creation of negatively curved polyaromatics enabled by annulative coupling that forms an eight-membered ring

Abstract

The discoveries of new forms of carbon have always opened doors to new science and technology. In 1991, three-dimensional (3D) periodic carbon crystals with negative Gaussian curvatures that consist of six- and eight-membered rings were proposed. To realize these 3D periodic carbon crystals (known as Mackay crystals), methods for creating polyaromatic structures embedding eight-membered rings must be developed. Here we report two annulative coupling reactions that form an eight-membered ring through catalytic C–H functionalization. We have discovered that bay-chlorinated polyaromatics undergo either annulative dimerization or cross-coupling with biphenylene in the presence of a palladium catalyst to form various hitherto inaccessible polyaromatics embedding an eight-membered ring. The threefold annulative cross-coupling of 1,5,9-trichlorotriphenylene allowed construction of a highly curved nanocarbon. The present work not only demonstrates the potential of annulative coupling for constructing octagonal nanocarbons but also provides a conceptual pathway for the synthetic realization of 3D periodic carbon crystals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of the study.
Fig. 2: Annulative dimerization of bay-chlorinated polycyclic aromatic hydrocarbons.
Fig. 3: Proposed reaction mechanism of annulative dimerization.
Fig. 4: Development of annulative cross-coupling of bay-chlorinated polyaromatics.
Fig. 5: Products of threefold annulation.
Fig. 6: Annulative cross-coupling of bay-trichlorinated triphenylene.

Data availability

Materials and methods, experimental procedures, detailed optimization studies, mechanistic studies, photophysical studies and NMR spectra are available in the Supplementary Information or from the corresponding authors upon reasonable request. The atomic coordinates of the optimized models are provided in Supplementary Data 1. Crystallographic data for compounds 5d, 5e and 8a are available free of charge from the Cambridge Crystallographic Data Centre under deposition numbers 1898108, 1898109 and 1898106. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. 1.

    Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).

    CAS  Article  Google Scholar 

  2. 2.

    Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    CAS  Article  Google Scholar 

  3. 3.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  PubMed  Google Scholar 

  4. 4.

    Segawa, Y., Ito, H. & Itami, K. Structurally uniform and atomically precise carbon nanostructures. Nat. Rev. Mater 1, 15002 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Mackay, A. L. & Terrones, H. Diamond from graphite. Nature 352, 762–762 (1991).

    Article  Google Scholar 

  6. 6.

    Lenosky, T., Gonze, X., Teter, M. & Elser, V. Energetics of negatively curved graphitic carbon. Nature 355, 333–335 (1992).

    CAS  Article  Google Scholar 

  7. 7.

    Park, N. et al. Magnetism in all-carbon nanostructures with negative Gaussian curvature. Phys. Rev. Lett. 91, 237204 (2003).

    Article  Google Scholar 

  8. 8.

    Tagami, M., Liang, Y., Naito, H., Kawazoe, Y. & Kotani, M. Negatively curved cubic carbon crystals with octahedral symmetry. Carbon 76, 266–274 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Majewski, M. A. & Stępień, M. Bowls, hoops, and saddles: synthetic approaches to curved aromatic molecules. Angew. Chem. Int. Ed. 58, 86–116 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Pun, S. H. & Miao, Q. Toward negatively curved carbons. Acc. Chem. Res. 51, 1630–1642 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Deng, C.-L., Peng, X.-S., Wong, H. N. C. in Polycyclic Arenes and Heteroarenes: Synthesis, Properties and Applications (ed. Miao, Q.) 111–141 (VCH-Wiley, 2016).

  12. 12.

    Han, J.-W., Peng, X.-S. & Wong, H. N. C. Synthesis of tetraphenylene derivatives and their recent advances. Natl Sci. Rev. 4, 892–916 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Rickhaus, M., Mayor, M. & Juríček, M. Chirality in curved polyaromatic systems. Chem. Soc. Rev. 46, 1643–1660 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Márquez, I. R., Castro-Fernández, S., Millán, A. & Campaña, A. G. Synthesis of distorted nanographenes containing seven- and eight-membered carbocycles. Chem. Commun. 54, 6705–6718 (2018).

    Article  Google Scholar 

  15. 15.

    Thulin, B. & Wennerström, O. Synthesis of [2.0.2.0]metacyclophanediene and bi-4,5-phenanthrylene. Tetrahedron Lett. 18, 929–930 (1977).

    Article  Google Scholar 

  16. 16.

    Leach, D. N. & Reiss, J. A. Cyclophanes. 9. Dibenzo[def,pqr]tetraphenylene: a benzoannulated cyclooctatetraene composed of orthogonal aromatic systems. J. Org. Chem. 43, 2484–2487 (1978).

    CAS  Article  Google Scholar 

  17. 17.

    Sakamoto, Y. & Suzuki, T. Tetrabenzo[8]circulene: aromatic saddles from negatively curved graphene. J. Am. Chem. Soc. 135, 14074–14077 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Cheung, K. Y., Chan, C. K., Liu, Z. & Miao, Q. A twisted nanographene consisting of 96 carbon atoms. Angew. Chem. Int. Ed. 56, 9003–9007 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Pun, S. H. et al. Synthesis, structures, and properties of heptabenzo[7]circulene and octabenzo[8]circulene. J. Am. Chem. Soc. 141, 9680–9686 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    Miller, R. W., Duncan, A. K., Schneebeli, S. T., Gray, D. L. & Whalley, A. C. Synthesis and structural data of tetrabenzo[8]circulene. Chem. Eur. J. 20, 3705–3711 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Miller, R. W., Averill, S. E., Van Wyck, S. J. & Whalley, A. C. General method for the synthesis of functionalized tetrabenzo[8]circulenes. J. Org. Chem. 81, 12001–12005 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Feng, C.-N., Kuo, M.-Y. & Wu, Y.-T. Synthesis, structural analysis, and properties of [8]circulenes. Angew. Chem. Int. Ed. 52, 7791–7794 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Feng, C.-N., Hsu, W.-C., Li, J.-Y., Kuo, M.-Y. & Wu, Y.-T. Per-substituted [8]circulene and its non-planar fragments: synthesis, structural analysis, and properties. Chem. Eur. J. 22, 9198–9208 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Ito, H., Ozaki, K. & Itami, K. Annulative π-extension (APEX): rapid access to fused arenes, heteroarenes, and nanographenes. Angew. Chem. Int. Ed. 56, 11144–11164 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Ito, H., Segawa, Y., Murakami, K. & Itami, K. Polycyclic arene synthesis by annulative π-extension. J. Am. Chem. Soc. 141, 3–10 (2019).

    CAS  Article  Google Scholar 

  26. 26.

    Koga, Y., Kaneda, T., Saito, Y., Murakami, K. & Itami, K. Synthesis of partially and fully fused polyaromatics by annulative chlorophenylene dimerization. Science 359, 435–439 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Rajca, A., Safronov, A., Rajca, S. & Shoemaker, R. Double helical octaphenylene. Angew. Chem. Int. Ed. 36, 488–491 (1997).

    CAS  Article  Google Scholar 

  28. 28.

    Zhen, Y. et al. Chiral nanoribbons based on doubly-linked oligo-perylene bisimides. Chem. Commun. 46, 6078–6080 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Chen, J.-X., Han, J.-W. & Wong, H. N. C. Synthesis and chiroptical properties of double-helical (M)- and (P)-o-oligophenylenes. Org. Lett. 17, 4296–4299 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Mouri, K., Saito, S. & Yamaguchi, S. Highly flexible π-expanded cyclooctatetraenes: cyclic thiazole tetramers with head-to-tail connection. Angew. Chem. Int. Ed. 51, 5971–5975 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Jiang, H., Zhang, Y., Chen, D., Zhou, B. & Zhang, Y. An approach to tetraphenylenes via Pd-catalyzed C−H functionalization. Org. Lett. 18, 2032–2035 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Zhu, C., Zhao, Y., Wang, D., Sun, W.-Y. & Shi, Z. Palladium-catalyzed direct arylation and cyclization of o-iodobiaryls to a library of tetraphenylenes. Sci. Rep. 6, 33131 (2016).

    Article  Google Scholar 

  33. 33.

    Fukuzumi, K., Nishii, Y. & Miura, M. Palladium-catalyzed synthesis of heteroarene-fused cyclooctatetraenes through dehydrogenative cyclodimerization. Angew. Chem. Int. Ed. 56, 12746–12750 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Edelbach, B. L., Lachicotte, R. J. & Jones, W. D. Mechanistic investigation of catalytic carbon–carbon bond activation and formation by platinum and palladium phosphine complexes. J. Am. Chem. Soc. 120, 2843–2853 (1998).

    CAS  Article  Google Scholar 

  35. 35.

    Masselot, D., Charmant, J. P. H. & Gallagher, T. Intercepting palladacycles derived by C–H insertion. A mechanism-driven entry to heterocyclic tetraphenylenes. J. Am. Chem. Soc. 128, 694–695 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JST ERATO grant number JPMJER1302 (K.I.); JSPS KAKENHI grant numbers 19H05463 (K.I.), JP17H04868 (K.M.), JP19H02700 (K.M.), JP19H02701 (Y.S.) and JP19K22183 (Y.S.); Shorai Foundation for Science and Technology (K.M.); and the Noguchi Institute (Y.S. and K.M.). We thank Rigaku Co for assistance with the X-ray analysis. Calculations were performed using resources of the Research Center for Computational Science, Okazaki, Japan. ITbM is supported by the World Premier International Research Center Initiative (WPI), Japan.

Author information

Affiliations

Authors

Contributions

K.I. and K.M. conceived the concept and directed the project. Y.K. and S.M. conducted experiments. Y.S. performed X-ray crystallography. K.I and K.M. prepared the manuscript with feedback from the other authors.

Corresponding authors

Correspondence to Kei Murakami or Kenichiro Itami.

Ethics declarations

Competing interests

K.I., K.M. and Y.K. are inventors on a patent application (JP 2019-091748) submitted by Nagoya University that covers the synthetic methods and its applications included in this paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, Tables 1–10, Figs. 1–16, and References.

Supplementary Data 1

Cartesian coordinates.

Supplementary Data

CIF file of compound 5d.

Supplementary Data

CIF file of compound 5e.

Supplementary Data

CIF file of compound 8a.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matsubara, S., Koga, Y., Segawa, Y. et al. Creation of negatively curved polyaromatics enabled by annulative coupling that forms an eight-membered ring. Nat Catal 3, 710–718 (2020). https://doi.org/10.1038/s41929-020-0487-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing