Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective hydrogenation of dialkyl ketones

An Author Correction to this article was published on 04 August 2020

This article has been updated

Abstract

Chiral catalyst development is a key to asymmetric catalysis research. The enantioselectivity of a chiral catalyst relies on its ability to distinguish the prochiral centres or faces of substrates, which is difficult when the two groups attached to the centre or face are spatially and electronically similar. For example, dialkyl ketones are difficult to reduce enantioselectively. Here we report a protocol for the highly enantioselective hydrogenation of dialkyl ketones catalysed by a rationally designed chiral spiro iridium complex. The tridentate spiro structure and the bulky phosphino groups of the chiral ligand imparted a remarkable stability and enantioselectivity to the catalyst. The protocol is highly efficient for generating chiral aliphatic alcohols, and has potential for a wide application in pharmaceuticals and fine chemicals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic asymmetric hydrogenation of dialkylketones.
Fig. 2: Preparations of SpiroPNP ligands and Ir–SpiroPNP catalyst.
Fig. 3: Asymmetric hydrogenation of dialkylketones catalysed by (R)-Cat1.
Fig. 4: Asymmetric hydrogenation of aliphatic cyclic ketones catalysed by (R)-Cat1.
Fig. 5: DFT calculations.

Similar content being viewed by others

Data availability

Data relating to the materials and methods, optimization studies, experimental procedures, DFT calculations, HPLC spectra, GC spectra and NMR spectra are available in the Supplementary Information. Crystallographic data for catalyst (R)-Cat1 is available free of charge from the CCDC under reference number 1913872. All other data are available from the authors upon reasonable request.

Change history

References

  1. Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. (eds) Comprehensive Asymmetric Catalysis Vol. I–III (Springer, 1999).

  2. Štefane, B. & Požgan, F. Advances in catalyst systems for the asymmetric hydrogenation and transfer hydrogenation of ketones. Catal. Rev. 56, 82–174 (2014).

    Article  Google Scholar 

  3. Gotor, V., Alfonso, I. & Garcia-Urdiales, E. (eds) Asymmetric Organic Synthesis with Enzymes (Wiley-VCH, 2008).

  4. García-Urdiales, E., Alfonso, I. & Gotor, V. Update 1 of enantioselective enzymatic desymmetrizations in organic synthesis. Chem. Rev. 111, PR110–PR180 (2011).

    Article  Google Scholar 

  5. Fischer, E. Influence of the configuration on the effect of the enzymes. Ber. Dtsch. Chem. Ges. 27, 2985–2993 (1894).

    Article  CAS  Google Scholar 

  6. Reetz, M. T. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J. Am. Chem. Soc. 135, 12480–12496 (2013).

    Article  CAS  Google Scholar 

  7. Jiang, Q., Jiang, Y., Xiao, D., Cao, P. & Zhang, X. Highly enantioselective hydrogenation of simple ketones catalyzed by a Rh–PennPhos complex. Angew. Chem. Int. Ed. 37, 1100–1103 (1998).

    Article  CAS  Google Scholar 

  8. Ohkuma, T. et al. Asymmetric hydrogenation of tert-alkyl ketones. J. Am. Chem. Soc. 127, 8288–8289 (2005).

    Article  CAS  Google Scholar 

  9. Yamamura, T., Nakatsuka, H., Tanaka, S. & Kitamura, M. Asymmetric hydrogenation of tert-alkyl ketones: DMSO effect in unification of stereoisomeric ruthenium complexes. Angew. Chem. Int. Ed. 52, 9313–9315 (2013).

    Article  CAS  Google Scholar 

  10. Garbe, M. et al. Manganese (i)-catalyzed enantioselective hydrogenation of ketones using a defined chiral PNP pincer ligand. Angew. Chem. Int. Ed. 56, 11237–11241 (2017).

    Article  CAS  Google Scholar 

  11. Prelog, V. Specification of the stereospecificity of some oxido-reductases by diamond lattice sections. Pure Appl. Chem. 9, 119–130 (1964).

    Article  CAS  Google Scholar 

  12. Jones, J. B. & Jakovac, I. J. A new cubic-space section model for predicting the specificity of horse liver alcohol dehydrogenase-catalyzed oxidoreductions. Can. J. Chem. 60, 19–28 (1982).

    Article  CAS  Google Scholar 

  13. Keinan, E., Hafeli, E. K., Seth, K. K. & Lamed, R. Thermostable enzymes in organic synthesis. 2. Asymmetric reduction of ketones with alcohol dehydrogenase from Thermoanaerobium brockii. J. Am. Chem. Soc. 108, 162–169 (1986).

    Article  CAS  Google Scholar 

  14. Moore, J. C., Pollard, D. J., Kosjek, B. & Devine, P. N. Advances in the enzymatic reduction of ketones. Acc. Chem. Res. 40, 1412–1419 (2007).

    Article  CAS  Google Scholar 

  15. Nealon, C. M., Musa, M. M., Patel, J. M. & Phillips, R. S. Controlling substrate specificity and stereospecificity of alcohol dehydrogenases. ACS Catal. 5, 2100–2114 (2015).

    Article  CAS  Google Scholar 

  16. Xie, J.-H., Liu, X.-Y., Xie, J.-B., Wang, L.-X. & Zhou, Q.-L. An additional coordination group leads to extremely efficient chiral iridium catalysts for asymmetric hydrogenation of ketones. Angew. Chem. Int. Ed. 50, 7329–7332 (2011).

    Article  CAS  Google Scholar 

  17. Xie, J.-H. et al. Chiral iridium catalysts bearing spiro pyridine–aminophosphine ligands enable highly efficient asymmetric hydrogenation of β-aryl-β-ketoesters. Angew. Chem. Int. Ed. 51, 201–203 (2012).

    Article  CAS  Google Scholar 

  18. Yang, X.-H., Xie, J.-H., Liu, W.-P. & Zhou, Q.-L. Catalytic asymmetric hydrogenation of δ-ketoesters: highly efficient approach to chiral 1,5-diols. Angew. Chem. Int. Ed. 52, 7833–7836 (2013).

    Article  CAS  Google Scholar 

  19. de Vries, J. G. & Elsevier, C. J. (eds) The Handbook of Homogeneous Hydrogenation (Wiley-VCH, 2007).

  20. Seo, C. S. G. & Morris, R. H. Catalytic homogeneous asymmetric hydrogenation: successes and opportunities. Organometallics 38, 47–65 (2019).

    Article  CAS  Google Scholar 

  21. Dub, P. A. & Gordon, J. C. The role of the metal-bound N–H functionality in Noyori-type molecular catalysts. Nat. Rev. Chem. 2, 396–408 (2018).

    Article  CAS  Google Scholar 

  22. Yang, X.-H., Wang, K., Zhu, S.-F., Xie, J.-H. & Zhou, Q.-L. Remote ester group leads to efficient kinetic resolution of racemic aliphatic alcohols via asymmetric hydrogenation. J. Am. Chem. Soc. 136, 17426–17429 (2014).

    Article  CAS  Google Scholar 

  23. Arora, S., Balasubramanian, S., Bradley, W. D., William, D. & Trojer, P. Combination therapies for cancer by modulation of histone methyl modifying enzymes. International patent WO2017018975 (2017).

  24. Anderson, B. A. et al. Application of a practical biocatalytic reduction to an enantioselective synthesis of the 5H-2,3-benzodiazepine LY300164. J. Am. Chem. Soc. 117, 12358–12359 (1995).

    Article  CAS  Google Scholar 

  25. Nikalje, M. D., Sasikumar, M. & Muthukrishnan, M. A facile enantioselective synthesis of enantiomerically pure (R)-phenoxybenzamine hydrochloride using the hydrolytic kinetic resolution method. Tetrahedron: Asymmetry 21, 2825–2829 (2010).

    Article  CAS  Google Scholar 

  26. Song, L., Liu, Y. & Tong, R. Cephalosporolide B serving as a versatile synthetic precursor: asymmetric biomimetic total syntheses of Cephalosporolides C, E, F, G, and (4-OMe-)G. Org. Lett. 15, 5850–5853 (2013).

    Article  CAS  Google Scholar 

  27. Iwami, M., Shiina, T., Hirayama, H. & Shimizu, Y. Intraluminal administration of zingerol, a non-pungent analogue of zingeron, inhibits colonic motility in rats. Biomed. Res. 32, 181–185 (2011).

    Article  CAS  Google Scholar 

  28. Goudie, A. C. et al. 4-(6-Methoxy-2-naphthyl)butan-2-one and related analogues, a novel structural class of antiinflammatory compounds. J. Med. Chem. 21, 1260–1264 (1978).

    Article  CAS  Google Scholar 

  29. Bracher, F. & Schulte, B. Total synthesis of both enantiomers of the macrocyclic lactone citreofuran. Nat. Prod. Res. 17, 293–299 (2003).

    Article  CAS  Google Scholar 

  30. Wijdeven, M. A., Willemsen, J. & Rutjes, F. P. J. T. The 3-hydroxypiperidine skeleton: key element in natural product synthesis. Eur. J. Org. Chem. 2010, 2831–2844 (2010).

    Article  Google Scholar 

  31. Chang, B. et al. Ibrutinib combination therapy of cancer. International patent WO2014168975 (2014).

  32. Babua, M. S. et al. A practical and enantiospecific synthesis of (–)-(R)-and (+)-(S)-piperidin-3-ols. Helv. Chim. Acta 97, 1507–1515 (2014).

    Article  Google Scholar 

  33. Ju, X. et al. Development of a biocatalytic process to prepare (S)-N-Boc-3-hydroxypiperidine. Org. Process Res. Dev. 18, 827–830 (2014).

    Article  CAS  Google Scholar 

  34. Desai, D., Chang, L. & Amin, S. Synthesis and bioassay of 4-ipomeanol analogs as potential chemopreventive agents against 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced tumorigenicity in A/J mice. Cancer Lett. 108, 263–270 (1996).

    Article  CAS  Google Scholar 

  35. Leijondahl, K., Borén, L., Braun, R. & Bäckvall, J. E. Enantiopure 1,5-diols from dynamic kinetic asymmetric transformation: useful synthetic intermediates for the preparation of chiral heterocycles. Org. Lett. 10, 2027–2030 (2008).

    Article  CAS  Google Scholar 

  36. Clark, R. B. et al. Synthesis and biological evaluation of 8-aminomethyltetracycline derivatives as novel antibacterial agents. J. Med. Chem. 56, 8112–8138 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (nos 21790332, 21532003 and 9195600) and the ‘111’ project (B06005) of the Ministry of Education of China for financial support. We thank H. Song of the State Key Laboratory of Elemento-Organic Chemistry for the measurement and analysis of the single-crystal structure of (R)-Cat1.

Author information

Authors and Affiliations

Authors

Contributions

Q.-L.Z. conceived this work; F.-H.Z., J.-H.X. and Q.-L.Z. designed the experiments and analysed the data; F.-H.Z., F.-J.Z. and M.-L.L. conducted the experiments; F.-H.Z. and Q.-L.Z. wrote the manuscript.

Corresponding author

Correspondence to Qi-Lin Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1 and 2, Tables 1–4 and references.

Supplementary Data 1

The Cartesian coordinates (Å) for the transition state in DFT calculations.

Supplementary Data 2

Crystallographic data for Cat1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, FH., Zhang, FJ., Li, ML. et al. Enantioselective hydrogenation of dialkyl ketones. Nat Catal 3, 621–627 (2020). https://doi.org/10.1038/s41929-020-0474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-0474-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing