Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation

Abstract

Dual photoredox/nickel-catalysed C–N cross-couplings suffer from low yields for electron-rich aryl halides. The formation of catalytically inactive nickel-black is responsible for this limitation and causes severe reproducibility issues. Here, we demonstrate that catalyst deactivation can be avoided by using a carbon nitride photocatalyst. The broad absorption of the heterogeneous photocatalyst enables wavelength-dependent control of the rate of reductive elimination to prevent nickel-black formation during the coupling of cyclic, secondary amines and aryl halides. A second approach, which is applicable to a broader set of electron-rich aryl halides, is to run the reactions at high concentrations to increase the rate of oxidative addition. Less nucleophilic, primary amines can be coupled with electron-rich aryl halides by stabilizing low-valent nickel intermediates with a suitable additive. The developed protocols enable reproducible, selective C–N cross-couplings of electron-rich aryl bromides and can also be applied for electron-poor aryl chlorides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nickel-catalysed C–N cross-coupling reactions.
Fig. 2: Catalyst deactivation during the reaction of 4-bromofluorobenzene with pyrrolidine.
Fig. 3: Evaluation of different coupling protocols.
Fig. 4: Reduction of catalyst deactivation using longer wavelengths.

Similar content being viewed by others

Data availability

Experimental procedures and relevant material and compound characterization data are available in the Supplementary Information. Any other data are available from the authors on reasonable request.

References

  1. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article  CAS  Google Scholar 

  2. Wolfe, J. P. & Buchwald, S. L. Nickel-catalyzed amination of aryl chlorides. J. Am. Chem. Soc. 119, 6054–6058 (1997).

    Article  CAS  Google Scholar 

  3. Ge, S., Green, R. A. & Hartwig, J. F. Controlling first-row catalysts: amination of aryl and heteroaryl chlorides and bromides with primary aliphatic amines catalyzed by a BINAP-ligated single-component Ni(0) complex. J. Am. Chem. Soc. 136, 1617–1627 (2014).

    Article  CAS  Google Scholar 

  4. Tassone, J. P., England, E. V., MacQueen, P. M., Ferguson, M. J. & Stradiotto, M. PhPAd-DalPhos: ligand-enabled, nickel-catalyzed cross-coupling of (hetero)aryl electrophiles with bulky primary alkylamines. Angew. Chem. Int. Ed. 58, 2485–2489 (2019).

    Article  CAS  Google Scholar 

  5. Kelly, R. A., Scott, N. M., Díez-González, S., Stevens, E. D. & Nolan, S. P. Simple synthesis of CpNi(NHC)Cl complexes (Cp = cyclopentadienyl; NHC = N-heterocyclic carbene). Organometallics 24, 3442–3447 (2005).

    Article  CAS  Google Scholar 

  6. Park, N. H., Teverovskiy, G. & Buchwald, S. L. Development of an air-stable nickel precatalyst for the amination of aryl chlorides, sulfamates, mesylates and triflates. Org. Lett. 16, 220–223 (2014).

    Article  CAS  Google Scholar 

  7. Kampmann, S. S., Skelton, B. W., Wild, D. A., Koutsantonis, G. A. & Stewart, S. G. An air-stable nickel(0) phosphite precatalyst for primary alkylamine C–N cross-coupling reactions. Eur. J. Org. Chem. 2015, 5995–6004 (2015).

    Article  CAS  Google Scholar 

  8. Shields, J. D., Gray, E. E. & Doyle, A. G. A modular, air-stable nickel precatalyst. Org. Lett. 17, 2166–2169 (2015).

    Article  CAS  Google Scholar 

  9. McGuire, R. T., Paffile, J. F. J., Zhou, Y. & Stradiotto, M. Nickel-catalyzed C–N cross-coupling of ammonia, (hetero)anilines, and indoles with activated (hetero)aryl chlorides enabled by ligand design. ACS Catal. 9, 9292–9297 (2019).

    Article  CAS  Google Scholar 

  10. Li, C. et al. Electrochemically enabled, nickel-catalyzed amination. Angew. Chem. Int. Ed. 56, 13088–13093 (2017).

    Article  CAS  Google Scholar 

  11. Kawamata, Y. et al. Electrochemically driven, Ni-catalyzed aryl amination: scope, mechanism and applications. J. Am. Chem. Soc. 141, 6392–6402 (2019).

    Article  CAS  Google Scholar 

  12. Lim, C.-H., Kudisch, M., Liu, B. & Miyake, G. M. C–N cross-coupling via photoexcitation of nickel–amine complexes. J. Am. Chem. Soc. 140, 7667–7673 (2018).

    Article  CAS  Google Scholar 

  13. Du, Y. et al. Strongly reducing, visible-light organic photoredox catalysts as sustainable alternatives to precious metals. Chem. Eur. J. 23, 10962–10968 (2017).

    Article  CAS  Google Scholar 

  14. Caputo, J. A. et al. General and efficient C–C bond forming photoredox catalysis with semiconductor quantum dots. J. Am. Chem. Soc. 139, 4250–4253 (2017).

    Article  CAS  Google Scholar 

  15. Liu, Y.-Y., Liang, D., Lu, L.-Q. & Xiao, W.-J. Practical heterogeneous photoredox/nickel dual catalysis for C–N and C–O coupling reactions. Chem. Commun. 55, 4853–4856 (2019).

    Article  CAS  Google Scholar 

  16. Ghosh, I. et al. Organic semiconductor photocatalyst can bifunctionalize arenes and heteroarenes. Science 365, 360–366 (2019).

    Article  CAS  Google Scholar 

  17. Corcoran, E. B. et al. Aryl amination using ligand-free Ni(ii) salts and photoredox catalysis. Science 353, 279–283 (2016).

    Article  CAS  Google Scholar 

  18. Escobar, R. A. & Johannes, J. A unified and practical method for carbon–heteroatom cross-coupling via nickel/photo dual catalysis. Chem. Eur. J. 26, 5168–5173 (2020).

    Article  CAS  Google Scholar 

  19. Kudisch, M., Lim, C.-H., Thordarson, P. & Miyake, G. M. Energy transfer to Ni-amine complexes in dual catalytic, light-driven C–N cross-coupling reactions. J. Am. Chem. Soc. 141, 19479–19486 (2019).

    Article  CAS  Google Scholar 

  20. Qi, Z.-H. & Ma, J. Dual role of a photocatalyst: generation of Ni(0) catalyst and promotion of catalytic C–N bond formation. ACS Catal. 8, 1456–1463 (2018).

    Article  CAS  Google Scholar 

  21. Wang, C., Cao, S. & Fu, W.-F. A stable dual-functional system of visible-light-driven Ni(ii) reduction to a nickel nanoparticle catalyst and robust in situ hydrogen production. Chem. Commun. 49, 11251–11253 (2013).

    Article  CAS  Google Scholar 

  22. Rodríguez, J. L., Valenzuela, M. A., Pola, F., Tiznado, H. & Poznyak, T. Photodeposition of Ni nanoparticles on TiO2 and their application in the catalytic ozonation of 2,4-dichlorophenoxyacetic acid. J. Mol. Catal. A Chem. 353–354, 29–36 (2012).

    Article  Google Scholar 

  23. Indra, A. et al. Nickel as a co-catalyst for photocatalytic hydrogen evolution on graphitic-carbon nitride (sg-CN): what is the nature of the active species? Chem. Commun. 52, 104–107 (2016).

    Article  CAS  Google Scholar 

  24. Cavedon, C., Madani, A., Seeberger, P. H. & Pieber, B. Semiheterogeneous dual nickel/photocatalytic (thio)etherification using carbon nitrides. Org. Lett. 21, 5331–5334 (2019).

    Article  CAS  Google Scholar 

  25. Pieber, B. et al. Semi-heterogeneous dual nickel/photo-catalysis using carbon nitrides: esterification of carboxylic acids with aryl halides. Angew. Chem. Int. Ed. 58, 9575–9580 (2019).

    Article  CAS  Google Scholar 

  26. Zhang, G. et al. Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity. Angew. Chem. Int. Ed. 56, 13445–13449 (2017).

    Article  CAS  Google Scholar 

  27. Rosso, C. et al. An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings. React. Chem. Eng. 5, 597–604 (2020).

    Article  CAS  Google Scholar 

  28. Crabtree, R. H. Deactivation in homogeneous transition metal catalysis: causes, avoidance and cure. Chem. Rev. 115, 127–150 (2015).

    Article  CAS  Google Scholar 

  29. Molina de la Torre, J. A., Espinet, P. & Albéniz, A. C. Solvent-induced reduction of palladium-aryls, a potential interference in Pd catalysis. Organometallics 32, 5428–5434 (2013).

    Article  CAS  Google Scholar 

  30. Zhang, G. et al. Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity. Angew. Chem. Int. Ed. 56, 13445–13449 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Max Planck Society for generous financial support. S.G. and B.P. thank the International Max Planck Research School on Multiscale Bio-Systems for funding. B.P. and S.R. acknowledge financial support from a Liebig Fellowship of the German Chemical Industry Fund (Fonds der Chemischen Industrie, FCI). B.P. thanks the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC 2008 – 390540038 – UniSysCat) for financial support. We thank our colleagues P.H. Seeberger, J. Malik, K. Gilmore, T. Heil, D. Cruz, H. Runge, R. Pitschke, J. Brandt and K. ten Brummelhuis (all MPIKG) for scientific, technical and analytical support.

Author information

Authors and Affiliations

Authors

Contributions

B.P. conceived and directed the research study. B.P., S.G. and S.R. designed all experiments. S.G. performed all synthetic experiments. S.G. and S.R. carried out characterizations of materials and studies on nickel-black formation. S.G. and B.P. wrote the manuscript with contributions from S.R.

Corresponding author

Correspondence to Bartholomäus Pieber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Notes 1–9, Figs. 1–41, Tables 1–34 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gisbertz, S., Reischauer, S. & Pieber, B. Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation. Nat Catal 3, 611–620 (2020). https://doi.org/10.1038/s41929-020-0473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-0473-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing