Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites

Abstract

Modulating the structures of subnanometric metal clusters at the atomic level is a great synthetic and characterization challenge in catalysis. Here, we show how the catalytic properties of subnanometric platinum clusters (0.5–0.6 nm) confined in the sinusoidal 10R channels of purely siliceous MFI zeolite are modulated upon introduction of partially reduced tin species that interact with the noble metal at the metal/support interface. The platinum–tin clusters are stable in H2 over an extended period of time (>6 h), even at high temperatures (for example, 600 °C), which is determined by only a few additional tin atoms added to the platinum clusters. The structural features of platinum–tin clusters, which are not immediately visible by conventional characterization techniques but can be established after combination of in situ extended X-ray absorption fine structure, high-angle annular dark-field scanning transmission electron microscopy and CO infrared data, are key to providing a one-order of magnitude lower deactivation rate in the propane dehydrogenation reaction while maintaining high intrinsic (initial) catalytic activity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Identification of the location of subnanometric Pt species within the MFI structure.
Fig. 2: Characterization of the chemical states and coordination environments of Pt and Sn.
Fig. 3: Distribution of Pt and Sn species.
Fig. 4: Percentage of Pt–Sn contacts in various K-PtSn@MFI samples.
Fig. 5: CO-IR spectra and CO chemisorption results.
Fig. 6: Structural evolution of K-PtSn@MFI during reduction with H2.
Fig. 7: Catalytic performance for the propane dehydrogenation reaction.

Data availability

All the data needed to support the plots and evaluate the conclusions within this article are present within it and the Supplementary Information, or are available from the corresponding author upon reasonable request.

Code availability

The codes used in this work for image analysis are available from the corresponding author upon reasonable request.

References

  1. 1.

    Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    An, K. & Somorjai, G. A. Nanocatalysis I: synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies. Catal. Lett. 145, 233–248 (2014).

    Article  CAS  Google Scholar 

  3. 3.

    Ferrando, R., Jellinek, J. & Johnston, R. L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Yu, W., Porosoff, M. D. & Chen, J. G. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112, 5780–5817 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Resasco, D. E. in Encyclopedia of Catalysis (ed. Horváth, I.) (Wiley, 2002).

  6. 6.

    Vora, B. V. Development of dehydrogenation catalysts and processes. Top. Catal. 55, 1297–1308 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Sattler, J. J., Ruiz-Martinez, J., Santillan-Jimenez, E. & Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114, 10613–10653 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Sanfilippo, D. & Miracca, I. Dehydrogenation of paraffins: synergies between catalyst design and reactor engineering. Catal. Today 111, 133–139 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    Redekop, E. A. et al. Delivering a modifying element to metal nanoparticles via support: Pt–Ga alloying during the reduction of Pt/Mg(Al,Ga)Ox catalysts and Its effects on propane dehydrogenation. ACS Catal. 4, 1812–1824 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Deng, L. et al. Dehydrogenation of propane over silica-supported platinum–tin catalysts prepared by direct reduction: effects of tin/platinum ratio and reduction temperature. ChemCatChem 6, 2680–2691 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Filez, M., Redekop, E. A., Poelman, H., Galvita, V. V. & Marin, G. B. Advanced elemental characterization during Pt–In catalyst formation by wavelet transformed X-ray absorption spectroscopy. Anal. Chem. 87, 3520–3526 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Searles, K. et al. Highly productive propane dehydrogenation catalyst using silica-supported Ga–Pt nanoparticles generated from single-sites. J. Am. Chem. Soc. 140, 11674–11679 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Moliner, M. et al. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 138, 15743–15750 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Liu, L. et al. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9, 574 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Liu, Y. et al. A general strategy for fabricating isolated single metal atomic site catalysts in Y zzeolite. J. Am. Chem. Soc. 141, 9305–9311 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  17. 17.

    Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Lazic, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Yucelen, E., Lazic, I. & Bosch, E. G. T. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Sci. Rep. 8, 2676 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Lewis, J. D. et al. Distinguishing active site identity in Sn-Beta zeolites using 31P MAS NMR of adsorbed trimethylphosphine oxide. ACS Catal. 8, 3076–3086 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Uemura, Y. et al. In situ time-resolved XAFS study on the structural transformation and phase separation of Pt3Sn and PtSn alloy nanoparticles on carbon in the oxidation process. Phys. Chem. Chem. Phys. 13, 15833–15844 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Ramallo-López, J. M. et al. XPS and XAFS Pt L2,3-edge studies of dispersed metallic Pt and PtSn clusters on SiO2 obtained by organometallic synthesis: structural and electronic characteristics. J. Phys. Chem. B 107, 11441–11451 (2003).

    Article  CAS  Google Scholar 

  23. 23.

    Deng, L. et al. Elucidating strong metal-support interactions in Pt–Sn/SiO2 catalyst and its consequences for dehydrogenation of lower alkanes. J. Catal. 365, 277–291 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Zhang, B. et al. Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles. Energy Environ. Sci. 5, 9895–9902 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Collins, S. E. et al. The role of Pd–Ga bimetallic particles in the bifunctional mechanism of selective methanol synthesis via CO2 hydrogenation on a Pd/Ga2O3 catalyst. J. Catal. 292, 90–98 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Ogata, K. et al. Evolving affinity between Coulombic reversibility and hysteretic phase transformations in nano-structured silicon-based lithium-ion batteries. Nat. Commun. 9, 479 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Pei, Y. et al. Catalytic properties of intermetallic platinum-tin nanoparticles with non-stoichiometric compositions. J. Catal. 374, 136–142 (2019).

    CAS  Article  Google Scholar 

  29. 29.

    Freakley, S. J. et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351, 965–968 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Mayrhofer, K. J., Juhart, V., Hartl, K., Hanzlik, M. & Arenz, M. Adsorbate-induced surface segregation for core–shell nanocatalysts. Angew. Chem. Int. Ed. 48, 3529–3531 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    Peng, L., Ringe, E., Van Duyne, R. P. & Marks, L. D. Segregation in bimetallic nanoparticles. Phys. Chem. Chem. Phys. 17, 27940–27951 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Li, G.-J., Fujimoto, T., Fukuoka, A. & Ichikawa, M. Ship-in-bottle synthesis of Pt9-Pt15 carbonyl clusters inside NaY and NaX zeolites, in-situ FTIR and EXAFS characterization and the catalytic behaviors in 13CO exchange reaction and NO reduction by CO. Catal. Lett. 12, 171–185 (1992).

    CAS  Article  Google Scholar 

  33. 33.

    Gruene, P., Fielicke, A., Meijer, G. & Rayner, D. M. The adsorption of CO on group 10 (Ni, Pd, Pt) transition-metal clusters. Phys. Chem. Chem. Phys. 10, 6144–6149 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Serykh, A. I. et al. Stable subnanometre Pt clusters in zeolite NaX via stoichiometric carbonyl complexes: probing of negative charge by DRIFT spectroscopy of adsorbed CO and H2. Phys. Chem. Chem. Phys. 2, 5647–5652 (2000).

    CAS  Article  Google Scholar 

  35. 35.

    Garnier, A., Sall, S., Garin, F., Chetcuti, M. J. & Petit, C. Site effects in the adsorption of carbon monoxide on real 1.8 nm Pt nanoparticles: an infrared investigation in time and temperature. J. Mol. Catal. A 373, 127–134 (2013).

    CAS  Article  Google Scholar 

  36. 36.

    Corma, A., Serna, P., Concepcion, P. & Calvino, J. J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 130, 8748–8753 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Concepcion, P. et al. The promotional effect of Sn-beta zeolites on platinum for the selective hydrogenation of α,β-unsaturated aldehydes. Phys. Chem. Chem. Phys. 15, 12048–12055 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    de Menorval, L.-C., Chaqroune, A., Coq, B. & François Figueras, A. Characterization of mono- and bi-metallic platinum catalysts using CO FTIR spectroscopy size effects and topological segregation. J. Chem. Soc., Faraday Trans. 93, 3715–3720 (1997).

    Article  Google Scholar 

  39. 39.

    Balakrishnan, K. A chemisorption and XPS study of bimetallic Pt-Sn/Al2O3 catalysts. J. Catal. 127, 287–306 (1991).

    CAS  Article  Google Scholar 

  40. 40.

    Panja, C. & Koel, B. E. Probing the influence of alloyed Sn on Pt(100) surface chemistry by CO chemisorption. Isr. J. Chem. 38, 365–374 (1998).

    CAS  Article  Google Scholar 

  41. 41.

    Liu, Z., Jackson, G. S. & Eichhorn, B. W. PtSn intermetallic, core–shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angew. Chem. Int. Ed. 49, 3173–3176 (2010).

    CAS  Article  Google Scholar 

  42. 42.

    Wang, X. et al. Pt/Sn intermetallic, core/shell and alloy nanoparticles: colloidal synthesis and structural control. Chem. Mater. 25, 1400–1407 (2012).

    Article  CAS  Google Scholar 

  43. 43.

    Redekop, E. A. et al. Early stages in the formation and burning of graphene on a Pt/Mg(Al)Ox dehydrogenation catalyst: a temperature- and time-resolved study. J. Catal. 344, 482–495 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    Shi, L. et al. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation. Angew. Chem. Int. Ed. 54, 13994–13998 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    Sattler, J. J., Beale, A. M. & Weckhuysen, B. M. Operando Raman spectroscopy study on the deactivation of Pt/Al2O3 and Pt–Sn/Al2O3 propane dehydrogenation catalysts. Phys. Chem. Chem. Phys. 15, 12095–12103 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Vu, B. K. et al. Location and structure of coke generated over Pt–Sn/Al2O3 in propane dehydrogenation. J. Ind. Eng. Chem. 17, 71–76 (2011).

    CAS  Article  Google Scholar 

  47. 47.

    Vu, B. K. et al. Pt–Sn alloy phases and coke mobility over Pt–Sn/Al2O3 and Pt–Sn/ZnAl2O4 catalysts for propane dehydrogenation. Appl. Catal. A 400, 25–33 (2011).

    CAS  Article  Google Scholar 

  48. 48.

    Liu, L. et al. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: which are the working catalytic sites? ACS Catal. 9, 10626–10639 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    López-Haro, M. et al. A macroscopically relevant 3D-metrology approach for nanocatalysis research. Part. Part. Syst. Charact. 35, 1700343 (2018).

    Article  CAS  Google Scholar 

  50. 50.

    Kirkland, E. J. Advanced Computing in Electron Microscopy (Springer, 2010).

  51. 51.

    Bernal, S. et al. The interpretation of HREM images of supported metal catalysts using image simulation: profile view images. Ultramicroscopy 72, 135–164 (1998).

    CAS  Article  Google Scholar 

  52. 52.

    Simonelli, L. et al. CLÆSS: the hard X-ray absorption beamline of the ALBA CELLS synchrotron. Cogent Phys. 3, 1231987 (2016).

    Article  CAS  Google Scholar 

  53. 53.

    Guilera, G., Rey, F., Hernández-Fenollosa, J. & Cortés-Vergaz, J. J. One body, many heads; the Cerberus of catalysis. A new multipurpose in-situ cell for XAS at ALBA. J. Phys. Conf. Ser. 430, 012057 (2013).

    Article  CAS  Google Scholar 

  54. 54.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Yin, F., Ji, S., Wu, P., Zhao, F. & Li, C. Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane. J. Catal. 257, 108–116 (2008).

    CAS  Article  Google Scholar 

  56. 56.

    Allian, A. D. et al. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. J. Am. Chem. Soc. 133, 4498–4517 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the “Severo Ochoa Program” (SEV-2016-0683). L.L. thanks the ITQ for providing a contract. The authors also thank the Microscopy Service of the UPV for the TEM and STEM measurements. The XAS measurements were carried out in the CLÆSS beamline of the ALBA synchrotron. We thank Giovanni Agostini for his kind support in the analysis of XAS data. HR-HAADF-STEM measurements were performed at DME-UCA at Cadiz University with financial support from FEDER/MINECO (MAT2017-87579-R and MAT2016-81118-P). C.W.L. thanks CAPES (Science without Frontiers - Process no. 13191/13-6) for a predoctoral fellowship. The financial support from ExxonMobil for this project is also greatly acknowledged.

Author information

Affiliations

Authors

Contributions

A.C. conceived the project, directed the study and wrote the manuscript. L.L. carried out the synthesis, structural characterizations, catalytic measurements and collaborated in writing the manuscript. M.L.-H., R.M. and J.J.C. carried out the quasi in situ HR-HAADF-STEM measurements and image analyses. C.W.L. analysed the XAS data. L.L. and L.S. contributed to the collection of XAS data in the ALBA synchrotron. S.R.-B. carried out the 31P NMR measurements. P.C. carried out the CO-IR adsorption experiments. A.S. and P.S. contributed to the experimental design and data interpretation. All the authors discussed the results and contributed to the formation of the manuscript.

Corresponding author

Correspondence to Avelino Corma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–73 and Tables 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Lopez-Haro, M., Lopes, C.W. et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nat Catal 3, 628–638 (2020). https://doi.org/10.1038/s41929-020-0472-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing