Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plasmon-driven carbon–fluorine (C(sp3)–F) bond activation with mechanistic insights into hot-carrier-mediated pathways

Matters Arising to this article was published on 28 March 2022

Abstract

The activation of carbon–fluorine bonds is an industrially and environmentally critical, but energetically challenging, transformation. Here we demonstrate a plasmonic photocatalysis approach to visible-light-driven hydrodefluorination that utilizes aluminium–palladium antenna–reactor heterostructures. Photocatalytic hydrodefluorination of aliphatic carbon–fluorine (C(sp3)–F) bonds in fluoromethane as a model molecule, in the presence of deuterium, results in the selective production of monodeuterated methane with a remarkable photocatalytic efficiency and stability. Analysis of the reaction kinetics reveals a reduction in the apparent reaction barrier and changes to the deuterium reaction order under illumination, which suggests a non-thermal contribution from photogenerated hot carriers to the reaction pathway. Using embedded correlated wavefunction methods, the ground- and excited-state energetics and the role of plasmon excitation in lowering the reaction barrier and modifying the kinetics under illumination are determined. Plasmon-mediated carbon–fluorine bond activation represents a promising potential for applications in high-value chemical transformations, as well as in abatement technologies for the mitigation of anthropogenic polyfluoroorganic compounds.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Plasmon-driven C–F bond activation.
Fig. 2: Photocatalytic characterization of the Al−Pd antenna–reactor for HDF of CH3F.
Fig. 3: Long-term photocatalytic stability.
Fig. 4: Mechanism of the HDF of CH3F.
Fig. 5: Calculated ground- and excited-state energy curves along the minimum energy paths (MEPs).
Fig. 6: Kinetics measurements.

Data availability

The atomic coordinates for the surface reactions used in the quantum mechanical simulations are provided as Supplementary Data. The data that support the findings of this paper are available from the corresponding authors upon reasonable request.

Code availability

The modified VASP 5.3.3 code subroutines with embedding implementation and associated Python scripts, and the standalone embedding integral generator code used to transform the embedding potential from Cartesian grid to atomic orbital bases, are available via GitHub, https://github.com/EACcodes/VASPEmbedding and https://github.com/EACcodes/EmbeddingIntegralGenerator, respectively, both under the Mozilla Public License 2.0.

References

  1. Kiplinger, J. L., Richmond, T. G. & Osterberg, C. E. Activation of carbon–fluorine bonds by metal complexes. Chem. Rev. 94, 373–431 (1994).

    CAS  Google Scholar 

  2. Richmond, T. G. in Activation of Unreactive Bonds and Organic Synthesis (eds. Murai, S. et al.) 243–269 (Springer, 1999).

  3. Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J. & Meanwell, N. A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 58, 8315–8359 (2015).

    CAS  PubMed  Google Scholar 

  4. Lewandowski, G., Meissner, E. & Milchert, E. Special applications of fluorinated organic compounds. J. Hazard. Mater. 136, 385–391 (2006).

    CAS  PubMed  Google Scholar 

  5. Schaider, L. A. et al. Fluorinated compounds in US fast food packaging. Environ. Sci. Technol. Lett. 4, 105–111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shine, K. P. & Sturges, W. T. Atmospheric science. CO2 is not the only gas. Science 315, 1804–1805 (2007).

    CAS  PubMed  Google Scholar 

  7. Kuehnel, M. F., Lentz, D. & Braun, T. Synthesis of fluorinated building blocks by transition-metal-mediated hydrodefluorination reactions. Angew. Chem. Int. Ed. 52, 3328–3348 (2013).

    Google Scholar 

  8. Ahrens, T., Kohlmann, J., Ahrens, M. & Braun, T. Functionalization of fluorinated molecules by transition-metal-mediated C–F bond activation to access fluorinated building blocks. Chem. Rev. 115, 931–972 (2015).

    CAS  PubMed  Google Scholar 

  9. Fujita, T., Fuchibe, K. & Ichikawa, J. Transition-metal-mediated and -catalyzed C–F bond activation by fluorine elimination. Angew. Chem. Int. Ed. 58, 390–402 (2019).

    CAS  Google Scholar 

  10. Amii, H. & Uneyama, K. C−F bond activation in organic synthesis. Chem. Rev. 109, 2119–2183 (2009).

    CAS  PubMed  Google Scholar 

  11. Jones, W. D. Activation of C–F bonds using Cp*2ZrH2: a diversity of mechanisms. Dalton Trans. 2003, 3991–3995 (2003).

    Google Scholar 

  12. Douvris, C. & Ozerov, O. V. Hydrodefluorination of perfluoroalkyl groups using silylium–carborane catalysts. Science 321, 1188–1190 (2008).

    CAS  PubMed  Google Scholar 

  13. Stahl, T., Klare, H. F. T. & Oestreich, M. Main-group Lewis acids for C–F bond activation. ACS Catal. 3, 1578–1587 (2013).

    CAS  Google Scholar 

  14. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    CAS  PubMed  Google Scholar 

  15. Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012).

    CAS  PubMed  Google Scholar 

  16. Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015).

    CAS  PubMed  Google Scholar 

  17. Swearer, D. F. et al. Heterometallic antenna−reactor complexes for photocatalysis. Proc. Natl Acad. Sci. USA 113, 8916–8920 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Robatjazi, H. et al. Plasmon-induced selective carbon dioxide conversion on Earth-abundant aluminum–cuprous oxide antenna–reactor nanoparticles. Nat. Commun. 8, 27 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Swearer, D. F. et al. Plasmonic photocatalysis of nitrous oxide into N2 and O2 using aluminum–iridium antenna–reactor nanoparticles. ACS Nano 13, 8076–8086 (2019).

    CAS  PubMed  Google Scholar 

  20. Zhou, L. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018).

    CAS  PubMed  Google Scholar 

  21. Li, K. et al. Balancing near-field enhancement, absorption, and scattering for effective antenna–reactor plasmonic photocatalysis. Nano Lett. 17, 3710–3717 (2017).

    CAS  PubMed  Google Scholar 

  22. Wang, F. et al. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 135, 5588–5601 (2013).

    CAS  PubMed  Google Scholar 

  23. Torrens, H. Carbon–fluorine bond activation by platinum group metal complexes. Coord. Chem. Rev. 249, 1957–1985 (2005).

    CAS  Google Scholar 

  24. Eisenstein, O., Milani, J. & Perutz, R. N. Selectivity of C–H activation and competition between C–H and C–F bond activation at fluorocarbons. Chem. Rev. 117, 8710–8753 (2017).

    CAS  PubMed  Google Scholar 

  25. Suzuki, N., Fujita, T., Amsharov, K. Y. & Ichikawa, J. Aluminium-mediated aromatic C–F bond activation: regioswitchable construction of benzene-fused triphenylene frameworks. Chem. Commun. 52, 12948–12951 (2016).

    CAS  Google Scholar 

  26. Ahrens, M., Scholz, G., Braun, T. & Kemnitz, E. Catalytic hydrodefluorination of fluoromethanes at room temperature by silylium-ion-like surface species. Angew. Chem. Int. Ed. 52, 5328–5332 (2013).

    CAS  Google Scholar 

  27. Vol’pin, M. E. et al. Selective hydrogenolysis of the C–F bond. Mendeleev Commun. 1, 118–119 (1991).

    Google Scholar 

  28. Zheng, B. Y. et al. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat. Commun. 6, 7797 (2015).

    PubMed  Google Scholar 

  29. Haverkamp, R. G., Metson, J. B., Hyland, M. M. & Welch, B. J. Adsorption of hydrogen fluoride on alumina. Surf. Interface Anal. 19, 139–144 (1992).

    CAS  Google Scholar 

  30. Huang, D., Yin, L. & Niu, J. Photoinduced hydrodefluorination mechanisms of perfluorooctanoic acid by the SiC/graphene catalyst. Environ. Sci. Technol. 50, 5857–5863 (2016).

    CAS  PubMed  Google Scholar 

  31. Liu, X., Wang, Z., Zhao, X. & Fu, X. Light induced catalytic hydrodefluorination of perfluoroarenes by porphyrin rhodium. Inorg. Chem. Front. 3, 861–865 (2016).

    CAS  Google Scholar 

  32. Khaled, M. B., El Mokadem, R. K. & Weaver, J. D. Hydrogen bond directed photocatalytic hydrodefluorination: overcoming electronic control. J. Am. Chem. Soc. 139, 13092–13101 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Senaweera, S. M., Singh, A. & Weaver, J. D. Photocatalytic hydrodefluorination: facile access to partially fluorinated aromatics. J. Am. Chem. Soc. 136, 3002–3005 (2014).

    CAS  PubMed  Google Scholar 

  34. Sabater, S., Mata, J. A. & Peris, E. Hydrodefluorination of carbon–fluorine bonds by the synergistic action of a ruthenium–palladium catalyst. Nat. Commun. 4, 1–7 (2013).

    Google Scholar 

  35. Lopez, N., Łodziana, Z., Illas, F. & Salmeron, M. When Langmuir is too simple: H2 dissociation on Pd(111) at high coverage. Phys. Rev. Lett. 93, 146103 (2004).

    PubMed  Google Scholar 

  36. Spata, V. A. & Carter, E. A. Mechanistic insights into photocatalyzed hydrogen desorption from palladium surfaces assisted by localized surface plasmon resonances. ACS Nano 12, 3512–3522 (2018).

    CAS  PubMed  Google Scholar 

  37. de Jong, G. T. & Bickelhaupt, F. M. Catalytic carbon−halogen bond activation: trends in reactivity, selectivity, and solvation. J. Chem. Theory Comput. 3, 514–529 (2007).

    PubMed  Google Scholar 

  38. de Jong, G. T. & Bickelhaupt, F. M. Oxidative addition of the fluoromethane C−F bond to Pd. An ab initio benchmark and DFT validation study. J. Phys. Chem. A 109, 9685–9699 (2005).

    PubMed  Google Scholar 

  39. Li, H., Rivallan, M., Thibault-Starzyk, F., Travert, A. & Meunier, F. C. Effective bulk and surface temperatures of the catalyst bed of FT-IR cells used for in situ and operando studies. Phys. Chem. Chem. Phys. 15, 7321–7327 (2013).

    CAS  PubMed  Google Scholar 

  40. Baffou, G. et al. Photoinduced heating of nanoparticle arrays. ACS Nano 7, 6478–6488 (2013).

    CAS  PubMed  Google Scholar 

  41. Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    CAS  PubMed  Google Scholar 

  42. Kumar, P. V. & Norris, D. J. Tailoring energy transfer from hot electrons to adsorbate vibrations for plasmon-enhanced catalysis. ACS Catal. 7, 8343–8350 (2017).

    CAS  Google Scholar 

  43. Frischkorn, C. & Wolf, M. Femtochemistry at metal surfaces: nonadiabatic reaction dynamics. Chem. Rev. 106, 4207–4233 (2006).

    CAS  PubMed  Google Scholar 

  44. Buntin, S. A., Richter, L. J., Cavanagh, R. R. & King, D. S. Optically driven surface reactions: evidence for the role of hot electrons. Phys. Rev. Lett. 61, 1321–1324 (1988).

    CAS  PubMed  Google Scholar 

  45. Vadai, M., Angell, D. K., Hayee, F., Sytwu, K. & Dionne, J. A. In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles. Nat. Commun. 9, 4658 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Lynggaard, H., Andreasen, A., Stegelmann, C. & Stoltze, P. Analysis of simple kinetic models in heterogeneous catalysis. Prog. Surf. Sci. 77, 71–137 (2004).

    CAS  Google Scholar 

  47. Allian, A. D. et al. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. J. Am. Chem. Soc. 133, 4498–4517 (2011).

    CAS  PubMed  Google Scholar 

  48. Kale, M. J., Avanesian, T., Xin, H., Yan, J. & Christopher, P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate–metal bonds. Nano Lett. 14, 5405–5412 (2014).

    CAS  PubMed  Google Scholar 

  49. McClain, M. J. et al. Aluminum nanocrystals. Nano Lett. 15, 2751–2755 (2015).

    CAS  PubMed  Google Scholar 

  50. Vader, D. T., Viskanta, R. & Incropera, F. P. Design and testing of a high‐temperature emissometer for porous and particulate dielectrics. Rev. Sci. Instrum. 57, 87–93 (1986).

    CAS  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  Google Scholar 

  52. Becke, A. D. & Johnson, E. R. A density-functional model of the dispersion interaction. J. Chem. Phys. 123, 154101 (2005).

    PubMed  Google Scholar 

  53. Grimme, S., Enrlich, S. & Georigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  PubMed  Google Scholar 

  54. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  55. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  56. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  57. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    CAS  Google Scholar 

  58. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    CAS  Google Scholar 

  59. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  60. Makov, G. & Payne, M. C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995).

    CAS  Google Scholar 

  61. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS  Google Scholar 

  62. Blöchl, P. E., Jepsen, O. & Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223–16233 (1994).

    Google Scholar 

  63. Huang, C., Pavone, M. & Carter, E. A. Quantum mechanical embedding theory based on a unique embedding potential. J. Chem. Phys. 134, 154110 (2011).

    PubMed  Google Scholar 

  64. Govind, N., Wang, Y. A., da Silva, A. J. R. & Carter, E. A. Accurate ab initio energetics of extended systems via explicit correlation embedded in a density functional environment. Chem. Phys. Lett. 295, 129–134 (1998).

    CAS  Google Scholar 

  65. Libisch, F., Huang, C. & Carter, E. A. Embedded correlated wavefunction schemes: theory and applications. Acc. Chem. Res. 47, 2768–2775 (2014).

    CAS  PubMed  Google Scholar 

  66. Yu, K., Krauter, C. M., Dieterich, J. M. Carter, E. A. in Fragmentation: Toward Accurate Calculations on Complex Molecular Systems (ed. Gordon, M.) 81–118 (John Wiley & Sons, Inc., 2017).

  67. Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

    CAS  Google Scholar 

  68. Peterson, K. A., Figgen, D., Dolg, M. & Stoll, H. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y–Pd. J. Chem. Phys. 126, 124101 (2007).

    PubMed  Google Scholar 

  69. Roos, B. O., Taylor, P. R. & Sigbahn, P. E. M. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 48, 157–173 (1980).

    CAS  Google Scholar 

  70. Andersson, K., Malmqvist, P. & Roos, B. O. Second‐order perturbation theory with a complete active space self‐consistent field reference function. J. Chem. Phys. 96, 1218–1226 (1992).

    CAS  Google Scholar 

  71. Andersson, K., Malmqvist, P. A., Roos, B. O., Sadlej, A. J. & Wolinski, K. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 94, 5483–5488 (1990).

    CAS  Google Scholar 

  72. Ghigo, G., Roos, B. O. & Malmqvist, P.-Å. A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem. Phys. Lett. 396, 142–149 (2004).

    CAS  Google Scholar 

  73. Werner, H. & Meyer, W. A quadratically convergent MCSCF method for the simultaneous optimization of several states. J. Chem. Phys. 74, 5794–5801 (1981).

    CAS  Google Scholar 

  74. Forsberg, N. & Malmqvist, P.-Å. Multiconfiguration perturbation theory with imaginary level shift. Chem. Phys. Lett. 274, 196–204 (1997).

    CAS  Google Scholar 

  75. Aquilante, F. et al. Molcas 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. J. Comput. Chem. 37, 506–541 (2016).

    CAS  PubMed  Google Scholar 

  76. Yu, K., Libisch, F. & Carter, E. A. Implementation of density functional embedding theory within the projector-augmented-wave method and applications to semiconductor defect states. J. Chem. Phys. 143, 102806 (2015).

    PubMed  Google Scholar 

  77. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    CAS  Google Scholar 

  78. Palik, E. D. Handbook of Optical Constants of Solids (Academic Press, 1985).

  79. Cheng, F. et al. Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties. ACS Nano 10, 9852–9860 (2016).

    CAS  PubMed  Google Scholar 

  80. Vasheghani, M. et al. Effect of Al2O3 phases on the enhancement of thermal conductivity and viscosity of nanofluids in engine oil. Heat Mass Transf. 47, 1401–1405 (2011).

    CAS  Google Scholar 

  81. Luikov, A. V., Shashkov, A. G., Vasiliev, L. L. & Fraiman, Y. E. Thermal conductivity of porous systems. Int. J. Heat Mass Transf. 11, 117–140 (1968).

    Google Scholar 

  82. Mukhopadhyay, P. & Barua, A. K. Thermal conductivity of hydrogen–helium gas mixtures. Br. J. Appl. Phys. 18, 635–640 (1967).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Air Force Office of Scientific Research Multidisciplinary Research Program of the University Research Initiative (MURI FA9550-15-1-0022) (E.A.C., P.N. and N.J.H.), DTRA (HDTRA1-16-1-0042) (N.J.H. and P.N.) and the Welch Foundation under grants C-1220 (N.J.H.) and C-1222 (P.N.). H.R. acknowledges the Postdoctoral Fellowship support in Chemical Science by the Arnold and Mabel Beckman Foundation. E.A.C. acknowledges the High Performance Computing Modernization Program (HPCMP) of the US Department of Defense and Princeton University’s Terascale Infrastructure for Groundbreaking Research in Engineering and Science (TIGRESS) for providing computational resources.

Author information

Authors and Affiliations

Authors

Contributions

H.R. and N.J.H. designed the project. H.R. performed the photocatalyst synthesis, carried out photocatalytic experiments and analysed the data. H.R. and L.Z. performed the photocatalyst characterizations. J.L.B. carried out the quantum mechanical calculations. M.Z. performed the electromagnetic simulations. P.C. assisted with interpreting the results. H.R. prepared the initial draft of the manuscript with an assist from J.L.B. All the authors discussed the results and contributed to the final manuscript preparation. E.A.C., P.N. and N.J.H. supervised the project.

Corresponding authors

Correspondence to Emily A. Carter or Naomi J. Halas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4 and Figs. 1–15.

Supplementary Data

Atomic coordinates for the surface reaction simulations on a palladium Pd(111) slab.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Robatjazi, H., Bao, J.L., Zhang, M. et al. Plasmon-driven carbon–fluorine (C(sp3)–F) bond activation with mechanistic insights into hot-carrier-mediated pathways. Nat Catal 3, 564–573 (2020). https://doi.org/10.1038/s41929-020-0466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-0466-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing